

So f tware

I D C D O C U M E N T A T I O N

Detection and
Feature

Extraction
(DFX)

Scheme Files

Approved for public release;
distribution unlimited

 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

Notice

This document was published June 2001 by the Monitoring Systems Operation of Science Applications Inter-
national Corporation (SAIC) as part of the International Data Centre (IDC) Documentation. Every effort was
made to ensure that the information in this document was accurate at the time of publication. However, infor-
mation is subject to change.

Contributors

Charles N. Katz, Science Applications International Corporation
Jeffrey A. Hanson, Science Applications International Corporation
Ethan D. Brown, Science Applications International Corporation

Trademarks

BEA TUXEDO is a registered trademark of BEA Systems, Inc.
Enterprise is a registered trademark of Sun Microsystems.
ORACLE is a registered trademark of Oracle Corporation.
SAIC is a trademark of Science Applications International Corporation.
Scheme In One Defun (SIOD) is a product of Paradigm Associates of Cambridge, Massachusetts.
Solaris is a registered trademark of Sun Microsystems.
SPARC is a registered trademark of Sun Microsystems.
SQL*Plus is a registered trademark of Oracle Corporation.
Sun is a registered trademark of Sun Microsystems.
UltraSPARC is a registered trademark of Sun Microsystems.
UNIX is a registered trademark of UNIX System Labs, Inc.

Ordering Information

The ordering number for this document is SAIC-01/3000.

This document is cited within other IDC documents as [IDC7.1.1].

Notice Page

De tec t ion and Fea tu re Ex t rac t ion
(DFX) - Scheme F i l e s

D e t e c t i o n a n d F e a t u

I D C - 7 . 1 . 1 J u n e 2 0

I D C D O C U M E N T A T I O N

CONTENTS
About this Document i

■ PURPOSE ii

■ SCOPE ii

■ AUDIENCE ii

■ RELATED INFORMATION iii

■ USING THIS DOCUMENT iii

Conventions v

Chapter 1: Overview 1

■ INTRODUCTION 2

■ FUNCTIONALITY 8

■ IDENTIFICATION 8

■ STATUS OF DEVELOPMENT 12

■ BACKGROUND AND HISTORY 12

■ OPERATING ENVIRONMENT 13

Hardware 13

Commercial-Off-The-Shelf Software 13

Chapter 2: Architectural Design 15

■ CONCEPTUAL DESIGN 16

DFX Data Representations 18

DFX Functions 22

Structural Design of Scheme Scripts 23

Scheme Application Invocation 24

■ DESIGN DECISIONS 25

Programming Language 26

Global Libraries 26
r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

0 1

I D C D O C U M E N T A T I O N

Database 27

Interprocess Communication (IPC) 27

Filesystem 27

Design Model 28

Database Schema Overview 28

■ FUNCTIONAL DESCRIPTION 30

Shared Functionality 30

Seismic Processing 32

Hydroacoustic Processing 34

Infrasonic Processing 36

Administrative Processing 36

■ INTERFACE DESIGN 37

Interface with Other IDC Systems 37

Interface with External Users 38

Interface with Operators 38

Chapter 3: Shared Funct ional i ty 39

■ DATABASE OPERATIONS 40

Opening and Closing the Database 41

Querying the Database 41

Screening Database Containers 43

Writing to the Database 44

■ INITIALIZING SITES 46

Contents of Initsite Objects 46

Creating Initsite Objects 52

■ READING WAVEFORMS 58

Waveform Objects 58

Determining Data Time Intervals 64

Reading Binary Files 69

Checking Quality of Waveforms 69

■ COMMON DFX SCHEME TASKS 71

Defining Generic Objects 71

Looping Over Contents of Containers 74
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

 D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u

I D C - 7 . 1 . 1 J u n e 2 0

I D C D O C U M E N T A T I O N

Internal Screening of Containers 74

Setting and Retrieving Parameters from CVAR Datastore 75

Error Handling 76

Memory Management 77

Chapter 4: Seismic Process ing 79

■ AUTOMATIC SEISMIC DETECTION [1] 80

General Description 81

Architecture 81

Input/Output 83

Processes 88

Detailed Description of Generate and Write TM Beams [1.3] 101

Detailed Description of Generate Pre-existing Arrival Beams [1.4] 108

Detailed Description of Perform Detection Processing [1.5] 113

Detailed Description of Revise Extracted Estimates [1.6] 122

Detailed Description of Perform Feature Extraction [1.8] 132

■ AUTOMATIC ORIGIN BEAM [2] 148

General Description 148

Architecture 149

Input/Output 151

Processes 153

Detailed Description of Generate and Write Origin Beams [2.3] 156

■ INTERACTIVE BEAM-ON-THE-FLY [3] 164

General Description 164

Architecture 165

Input/Output 166

Processes 168

Detailed Description of Initialize Sites [3.2] 170

Detailed Description of Generate and Write Origin Beam [3.3] 178

■ INTERACTIVE SEISMIC RECALL [4] 183

General Description 183

Architecture 184

Input/Output 184

Processes 189
r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

0 1

I D C D O C U M E N T A T I O N

Detailed Description of Initialize Travel-time Tables [4.2] 192

Detailed Description of Perform Recall Signal Processing [4.4] 194

■ AUTOMATIC SEISMIC RECALL [5] 202

General Description 202

Architecture 203

Input/Output 203

Processes 208

Detailed Description of Perform Recall Signal Processing [5.4] 213

■ AUTOMATIC DEPTH-PHASE SNR [6] 218

General Description 218

Architecture 219

Input/Output 219

Processes 223

Detailed Description of Estimate Depth-phase SNR [6.3] 226

■ AUTOMATIC NOISE AMPLITUDE ESTIMATION [7] 232

General Description 232

Architecture 233

Input/Output 235

Processes 237

Detailed Description of Estimate Noise Amplitude [7.5] 240

■ AUTOMATIC SEISMIC EVENT CHARACTERIZATION [8] 249

General Description 249

Architecture 250

Input/Output 252

Processes 259

Detailed Description of Estimate Event Characteristics [8.3] 266

Chapter 5: Hydroacoust ic Process ing 289

■ AUTOMATIC HYDROACOUSTIC DETECTION [9] 290

General Description 291

Architecture 291

Input/Output 292

Processes 295
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

 D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u

I D C - 7 . 1 . 1 J u n e 2 0

I D C D O C U M E N T A T I O N

Detailed Description of Make Detections [9.3] 304

Detailed Description of Measure Hydroacoustic Detection Features [9.6] 307

■ INTERACTIVE HYDROACOUSTIC RECALL [10] 312

General Description 312

Architecture 313

Input/Output 313

Processes 317

Detailed Description of Perform Recall Signal Processing [10.4] 319

■ AUTOMATIC HYDROACOUSTIC EVENT CHARACTERIZATION [11] 323

General Description 323

Architecture 324

Input/Output 325

Processes 328

Detailed Description of Estimate Event Characteristics [11.3] 330

Chapter 6: Infrasonic Process ing 339

■ AUTOMATIC INFRASONIC DETECTION [12] 340

General Description 341

Architecture 341

Input/Output 342

Processes 347

Detailed Description of Generate Primary Detection Space (PDS) [12.3] 366

Detailed Description of Generate Coherence Traces as Beams [12.4] 376

Detailed Description of Remove Redundant Detections [12.6] 381

Detailed Description of Estimate Signal Amplitude [12.7] 391

Detailed Description of Write Non-Redundant Detections [12.8] 399

Chapter 7: Administrat ive Process ing 405

■ SEGMENT ARCHIVING [13] 406

General Description 407

Architecture 407

Input/Output 409

Processes 412

Detailed Description of Perform Segment Archiving [13.3] 415
r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

0 1

I D C D O C U M E N T A T I O N

■ QUALITY CONTROL STATISTICS [14] 423

General Description 423

Architecture 423

Input/Output 424

Processes 427

Detailed Description of Identify Missing Waveforms [14.1] 432

Detailed Description of Calculate Waveforms Availability [14.3] 437

Chapter 8: Database Descr ipt ion 441

■ GENERAL DESCRIPTION 442

■ DATABASE TABLES 442

■ OUTPUT DATABASE ATTRIBUTES 444

Seismic Processing 444

Hydroacoustic Processing 449

Infrasonic Processing 451

Administrative Processing 451

References 453

Glossary G1

Index I1
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

 D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

De tec t ion and Fea tu re Ex t rac t ion
(DFX) - Scheme F i l e s

D e t e c t i o n a n d F e a t u

I D C - 7 . 1 . 1 J u n e 2 0

I D C D O C U M E N T A T I O N

FIGURES
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY 3

FIGURE 2. RELATIONSHIP OF DFX TO OTHER SOFTWARE UNITS

IN AUTOMATIC PROCESSING 5

FIGURE 3. RELATIONSHIP OF DFX TO OTHER SOFTWARE UNITS

IN INTERACTIVE PROCESSING 7

FIGURE 4. RELATIONSHIP OF DFX TO OTHER SOFTWARE UNITS

IN AUTOMATIC POST-ANALYSIS PROCESSING 9

FIGURE 5. DFX EXTERNAL DATA INTERFACE 17

FIGURE 6. DFX EXTERNAL DATA SOURCES AND INTERNAL DATA REPRESENTATIONS 19

FIGURE 7. ARCHITECTURE OF CREATE-INITSITE 53

FIGURE 8. ARCHITECTURE OF INITIALIZE-NET-SITES 55

FIGURE 9. ARCHITECTURE OF CREATE-INITSITE-CONTAINER-FROM-DBSITE-CONTAINER 56

FIGURE 10. ARCHITECTURE OF FILL-INITSITE-CONTAINER 57

FIGURE 11. COMPUTED DATA AND PROCESSING TIME INTERVALS 68

FIGURE 12. ARCHITECTURE OF SEISDET 82

FIGURE 13. ARCHITECTURE OF GENERATE AND WRITE TM BEAMS 102

FIGURE 14. ARCHITECTURE OF GENERATE PRE-EXISTING ARRIVAL BEAMS 109

FIGURE 15. ARCHITECTURE OF PERFORM DETECTION PROCESSING 114

FIGURE 16. ARCHITECTURE OF REVISE EXTRACTED ESTIMATES 123

FIGURE 17. ARCHITECTURE OF PERFORM FEATURE EXTRACTION 133

FIGURE 18. ARCHITECTURE OF ORIGINBEAM 150

FIGURE 19. ARCHITECTURE OF GENERATE AND WRITE ORIGIN BEAMS 157

FIGURE 20. ARCHITECTURE OF BOTF 165

FIGURE 21. ARCHITECTURE OF INITIALIZE SITES 172

FIGURE 22. ARCHITECTURE OF GENERATE BEAM 179

FIGURE 23. ARCHITECTURE OF INTSEISRCL 185
r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

0 1

I D C D O C U M E N T A T I O N
FIGURE 24. ARCHITECTURE OF INITIALIZE TRAVEL TIMES 193

FIGURE 25. ARCHITECTURE OF PERFORM RECALL SIGNAL PROCESSING 195

FIGURE 26. ARCHITECTURE OF AUTOSEISRCL 204

FIGURE 27. ARCHITECTURE OF PERFORM RECALL SIGNAL PROCESSING 214

FIGURE 28. ARCHITECTURE OF DPSNR 220

FIGURE 29. ARCHITECTURE OF PERFORM ESTIMATE DEPTH-PHASE SNR 227

FIGURE 30. ARCHITECTURE OF NOISEAMP 234

FIGURE 31. ARCHITECTURE OF ESTIMATE NOISE AMPLITUDE 241

FIGURE 32. ARCHITECTURE OF SEISEVCH 251

FIGURE 33. ARCHITECTURE OF ESTIMATE EVENT CHARACTERISTICS 267

FIGURE 34. ARCHITECTURE OF HYDRODET 292

FIGURE 35. ARCHITECTURE OF MAKE DETECTIONS 304

FIGURE 36. ARCHITECTURE OF MEASURE HYDROACOUSTIC DETECTION FEATURES 308

FIGURE 37. ARCHITECTURE OF INTHYDRORCL 314

FIGURE 38. ARCHITECTURE OF PERFORM RECALL SIGNAL PROCESSING 320

FIGURE 39. ARCHITECTURE OF HYDROEVCH 325

FIGURE 40. ARCHITECTURE OF ESTIMATE EVENT CHARACTERISTICS 332

FIGURE 41. ARCHITECTURE OF INFRADET 343

FIGURE 42. ARCHITECTURE OF GENERATE PRIMARY DETECTION SPACE (PDS) 367

FIGURE 43. ARCHITECTURE OF GENERATE COHERENCE TRACES AS BEAMS 377

FIGURE 44. ARCHITECTURE OF REMOVE REDUNDANT DETECTIONS 382

FIGURE 45. ARCHITECTURE OF ESTIMATE SIGNAL AMPLITUDE 392

FIGURE 46. ARCHITECTURE OF WRITE NON-REDUNDANT DETECTIONS 401

FIGURE 47. ARCHITECTURE OF SEGARCH 408

FIGURE 48. ARCHITECTURE OF PERFORM SEGMENT ARCHIVING 416

FIGURE 49. ARCHITECTURE OF QCSTATS 424

FIGURE 50. ARCHITECTURE OF IDENTIFY MISSING WAVEFORMS 433

FIGURE 51. ARCHITECTURE OF CALCULATE WAVEFORMS AVAILABILITY 438
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

 D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

Detec t ion and Fea tu re Ex t rac t ion
(DFX) - Scheme F i l e s

D e t e c t i o n a n d F e a t u

I D C - 7 . 1 . 1 J u n e 2 0

I D C D O C U M E N T A T I O N

TABLES
TABLE I: DATA FLOW SYMBOLS vi

TABLE II: TYPOGRAPHICAL CONVENTIONS vii

TABLE 1: DFX APPLICATIONS 10

TABLE 2: ABBREVIATIONS AND SYSTEM NAMES FOR DFX APPLICATIONS 11

TABLE 3: DATABASE TABLES USED BY DFX 28

TABLE 4: PARAMETERS STORED IN INITSITE 47

TABLE 5: DATABASE OBJECTS STORED IN INITSITE 47

TABLE 6: RECIPES STORED IN INITSITE 48

TABLE 7: WAVEFORM OBJECTS STORED IN INITSITE OBJECTS 49

TABLE 8: OBJECTS IN INITSITE PER APPLICATION 50

TABLE 9: METHOD USED TO CREATE INITSITE 52

TABLE 10: FUNCTIONAL INTERFACE OF QUERY-FOR-WFDATA-BY-STA-CHAN-TIME 58

TABLE 11: CONTENTS OF WFDATA OBJECT 59

TABLE 12: FUNCTIONAL INTERFACE OF QUERY-FOR-WFMEM-BY-STA-CHAN-TIME 62

TABLE 13: CONTENTS OF WFMEM OBJECT 63

TABLE 14: FUNCTIONAL INTERFACE OF COMPUTE-SITE-ORIGIN-TI 64

TABLE 15: FUNCTIONAL INTERFACE OF GET-DATA-INTERVAL 66

TABLE 16: FUNCTIONAL INTERFACE OF GET-PROCESSING-INTERVAL 66

TABLE 17: FUNCTIONAL INTERFACE OF READ-WAVEFORMS 69

TABLE 18: FUNCTIONAL INTERFACE OF QC-WAVEFORMS AND QC-WAVEFORMS-ALL 70

TABLE 19: COMMON GENERIC OBJECT TYPES 72

TABLE 20: INPUT PARAMETERS FOR AUTOMATIC SEISMIC DETECTION PROCESSING 84

TABLE 21: DATA PRODUCED BY AUTOMATIC SEISMIC DETECTION PROCESSING 87

TABLE 22: FUNCTIONAL INTERFACE OF CREATE-DETECTION-INITSITE 88

TABLE 23: INTERNAL SYMBOLS FOR INITIALIZE SITES 89
r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

0 1

I D C D O C U M E N T A T I O N
TABLE 24: FUNCTIONAL INTERFACE OF GET-DETECTION-CHANNEL-LIST 90

TABLE 25: FUNCTIONAL INTERFACE OF READ-DETECTION-WAVEFORMS 91

TABLE 26: FUNCTIONAL INTERFACE OF MAKE-AND-WRITE-TM-BEAMS 93

TABLE 27: FUNCTIONAL INTERFACE OF MAKE-PRE-EXISTING-ARRIVAL-BEAMS 95

TABLE 28: FUNCTIONAL INTERFACE OF MAKE-DETECTIONS 96

TABLE 29: FUNCTIONAL INTERFACE OF REVISE-DETECTION-ESTIMATES 97

TABLE 30: FUNCTIONAL INTERFACE OF SCREEN-DETECTION-CONTAINER 99

TABLE 31: FUNCTIONAL INTERFACE OF MEASURE-DETECTION-FEATURES 100

TABLE 32: PARAMETERS ACQUIRED BY EXTRACT PARAMETERS AND
SAVE AND RESET STAV-LEN 103

TABLE 33: FUNCTIONAL INTERFACE OF MAKE-BEAM-FROM-DATA 104

TABLE 34: FUNCTIONAL INTERFACE OF MAKE-NULL-BEAM 105

TABLE 35: FUNCTIONAL INTERFACE OF COMPUTE-SNR 106

TABLE 36: FUNCTIONAL INTERFACE OF WRITE-TM-STA 107

TABLE 37: PARAMETERS ACQUIRED BY EXTRACT PARAMETERS 109

TABLE 38: FUNCTIONAL INTERFACE OF QUERY-FOR-DBARRIVALS-WITH-BEAMS 110

TABLE 39: PARAMETERS SET IN LOCAL DETECTION GOBJ 111

TABLE 40: FUNCTIONAL INTERFACE OF MAKE-DET-BEAMS 112

TABLE 41: PARAMETERS ACQUIRED BY EXTRACT PARAMETERS 115

TABLE 42: FUNCTIONAL INTERFACE OF MAKE-BEAM-FROM-DATA 116

TABLE 43: FUNCTIONAL INTERFACE OF COMPUTE-SNR 118

TABLE 44: FUNCTIONAL INTERFACE OF FIND-TRIGGERS 119

TABLE 45: FUNCTIONAL INTERFACE OF FIND-DETECTIONS 120

TABLE 46: PARAMETERS ACQUIRED BY EXTRACT PARAMETERS 124

TABLE 47: FUNCTIONAL INTERFACE OF REVISE-DET-ONSET 125

TABLE 48: FUNCTIONAL INTERFACE OF COMPUTE-DET-AMP-BEST-BEAM 127

TABLE 49: FUNCTIONAL INTERFACE OF MAKE-FK 128

TABLE 50: FUNCTIONAL INTERFACE OF MEASURE-DETECTION-POLARIZATION 131

TABLE 51: PARAMETERS ACQUIRED BY EXTRACT PARAMETERS 134

TABLE 52: FUNCTIONAL INTERFACE OF CREATE-DBARRIVAL-FROM-DETECTION 136
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

 D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u

I D C - 7 . 1 . 1 J u n e 2 0

I D C D O C U M E N T A T I O N
TABLE 53: FUNCTIONAL INTERFACE OF SUBMIT-OBJECT-DB (ARRIVAL) 136

TABLE 54: FUNCTIONAL INTERFACE OF CREATE-DBAPMA-FROM-DETECTION 137

TABLE 55: FUNCTIONAL INTERFACE OF SUBMIT-OBJECT-DB (APMA) 138

TABLE 56: FUNCTIONAL INTERFACE OF MAKE-DET-AMPLITUDES 139

TABLE 57: FUNCTIONAL INTERFACE OF SUBMIT-CONTAINER-DB (AMPLITUDE) 140

TABLE 58: FUNCTIONAL INTERFACE OF MAKE-DET-BEAMS 141

TABLE 59: FUNCTIONAL INTERFACE OF CREATE-DBDETECTION-FROM-DETECTION 142

TABLE 60: FUNCTIONAL INTERFACE OF SUBMIT-OBJECT-DB (DETECTION) 143

TABLE 61: FUNCTIONAL INTERFACE OF CREATE-SBSNR-DBAMPLITUDE-FROM-DET 144

TABLE 62: FUNCTIONAL INTERFACE OF SUBMIT-CONTAINER-DB (SBSNR) 145

TABLE 63: FUNCTIONAL INTERFACE OF CREATE-DBAMP3C-FROM-DETECTION 146

TABLE 64: FUNCTIONAL INTERFACE OF SUBMIT-CONTAINER-DB (AMP3C) 147

TABLE 65: INPUT PARAMETERS FOR AUTOMATIC ORIGIN BEAM PROCESSING 151

TABLE 66: DATA PRODUCED BY AUTOMATIC ORIGIN BEAM PROCESSING 153

TABLE 67: FUNCTIONAL INTERFACE OF QUERY-FOR-DBORIGIN-BY-TIME 154

TABLE 68: FUNCTIONAL INTERFACE OF INITIALIZE-NET-SITES 155

TABLE 69: FUNCTIONAL INTERFACE OF PROCESS-ORIGIN-FOR-INITSITE 156

TABLE 70: PARAMETERS EXTRACTED FROM INITSITE AND DBORIGIN

OBJECTS BY PROCESS-ORIGIN-FOR-INITSITE 158

TABLE 71: INTERNAL PARAMETERS FOR PROCESS-ORIGIN-FOR-INITSITE 159

TABLE 72: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-INITSITE 160

TABLE 73: FUNCTIONAL INTERFACE OF COMPUTE-ORIGIN-BEAMS 161

TABLE 74: FUNCTIONAL INTERFACE OF SUBMIT-AUX 163

TABLE 75: INPUT PARAMETERS FOR INTERACTIVE BEAM-ON-THE-FLY PROCESSING 166

TABLE 76: DATA PRODUCED BY INTERACTIVE BEAM-ON-THE-FLY PROCESSING 168

TABLE 77: FUNCTIONAL INTERFACE OF INITIALIZE-STATION-SITES 169

TABLE 78: FUNCTIONAL INTERFACE OF CREATE-STATION-EVENT-BEAM 170

TABLE 79: FUNCTIONAL INTERFACE OF QUERY-FOR-STATIONS-SITE-CONTAINER 173

TABLE 80: FUNCTIONAL INTERFACE OF INITIALIZE-SITES 174

TABLE 81: FUNCTIONAL INTERFACE OF READ-DEFAULT-TRAVEL-TIME-TABLES 174
r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

0 1

I D C D O C U M E N T A T I O N
TABLE 82: FUNCTIONAL INTERFACE OF COMPUTE-STATIONS-TI 175

TABLE 83: FUNCTIONAL INTERFACE OF QUERY-FOR-WFDATA-CONTAINER 176

TABLE 84: FUNCTIONAL INTERFACE OF QUERY-FOR-WFMEM-CONTAINER 177

TABLE 85: FUNCTIONAL INTERFACE OF COMPUTE-ORIGIN-BEAMS 181

TABLE 86: FUNCTIONAL INTERFACE OF SUBMIT-CONTAINER-DB (WFDISC) 182

TABLE 87: INPUT PARAMETERS FOR INTERACTIVE SEISMIC RECALL PROCESSING 186

TABLE 88: DATA WRITTEN BY INTERACTIVE SEISMIC RECALL PROCESSING 188

TABLE 89: FUNCTIONAL INTERFACE OF INITIALIZE-FOR-TRAVEL-TIME 190

TABLE 90: FUNCTIONAL INTERFACE OF CREATE-RECALL-INITSITE 191

TABLE 91: FUNCTIONAL INTERFACE OF PROCESS-RECALL-ARRIVAL 192

TABLE 92: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-RECALL 196

TABLE 93: FUNCTIONAL INTERFACE OF FIND-RECALL-BEST-BEAM 197

TABLE 94: FUNCTIONAL INTERFACE OF REVISE-RECALL-FEATURES 198

TABLE 95: FUNCTIONS CALLED WITHIN REVISE-RECALL-FEATURES 198

TABLE 96: DATABASE OBJECTS DEFINED IN MEASURE-RECALL-FEATURES 200

TABLE 97: FUNCTIONAL INTERFACE OF MEASURE-RECALL-FEATURES 201

TABLE 98: INPUT PARAMETERS FOR AUTOMATIC SEISMIC RECALL PROCESSING 205

TABLE 99: DATA UPDATED BY AUTOMATIC SEISMIC RECALL PROCESSING 207

TABLE 100: INTERNAL SYMBOLS FOR QUERY-FOR-DBARRIVAL-CONTAINER 209

TABLE 101: POSSIBLE ARRIVAL QUERIES 209

TABLE 102: FUNCTIONAL INTERFACE OF INITIALIZE-FOR-RESIDUAL-UPDATE 210

TABLE 103: DATABASE QUERY FUNCTIONS USED BY INITIALIZE-FOR-RESIDUAL-UPDATE 211

TABLE 104: FUNCTIONAL INTERFACE OF CREATE-RECALL-INITSITE 212

TABLE 105: FUNCTIONAL INTERFACE OF PROCESS-RECALL-ARRIVAL 213

TABLE 106: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-RECALL 215

TABLE 107: FUNCTIONAL INTERFACE OF SCREEN-RECALL-DETECTIONS 217

TABLE 108: INPUT PARAMETERS FOR DEPTH-PHASE SNR PROCESSING 221

TABLE 109: DATA PRODUCED BY DEPTH-PHASE SNR PROCESSING 223

TABLE 110: INTERNAL SYMBOLS FOR QUERY-FOR-DBARRIVAL-DEPTH-PHASES 224

TABLE 111: FUNCTIONAL INTERFACE OF CREATE-DEPTH-PHASE-INITSITE 225
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

 D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u

I D C - 7 . 1 . 1 J u n e 2 0

I D C D O C U M E N T A T I O N
TABLE 112: FUNCTIONAL INTERFACE OF PROCESS-DEPTH-PHASE-ARRIVAL 225

TABLE 113: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-DEPTH-PHASE 228

TABLE 114: FUNCTIONAL INTERFACE OF MEASURE-DETECTION-AMPLITUDE 229

TABLE 115: INPUT PARAMETERS FOR AUTOMATIC NOISE AMPLITUDE ESTIMATION 235

TABLE 116: DATA PRODUCED BY AUTOMATIC NOISE AMPLITUDE ESTIMATION 237

TABLE 117: INTERNAL SYMBOLS FOR PROCESS-ORIGINS 239

TABLE 118: FUNCTIONAL INTERFACE OF PROCESS-ORIGIN-FOR-INITSITE 239

TABLE 119: INTERNAL SYMBOLS FOR EXTRACT PARAMETERS 242

TABLE 120: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-INITSITE 244

TABLE 121: FUNCTIONAL INTERFACE OF MEASURE-ORIGIN-AMPLITUDES 246

TABLE 122: FUNCTIONAL INTERFACE OF GC-WFDATA-CON 248

TABLE 123: INPUT PARAMETERS FOR SEISMIC EVENT CHARACTERIZATION PROCESSING 252

TABLE 124: DATA PRODUCED BY SEISMIC EVENT CHARACTERIZATION PROCESSING 259

TABLE 125: FUNCTIONAL INTERFACE OF QUERY-FOR-DBORIGIN-BY-TIME 260

TABLE 126: INTERNAL SYMBOLS FOR INITIALIZE-NET-SITES 261

TABLE 127: INTERNAL SYMBOLS SET FROM DATABASE QUERIES WITHIN
INITIALIZE-NET-SITES 263

TABLE 128: FUNCTIONAL INTERFACE OF QUERY-FOR-DBORIGIN-BY-TIME 264

TABLE 129: CRITERIA TO BE SATISFIED FOR FEATURE ESTIMATION 268

TABLE 130: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-INITSITE 270

TABLE 131: FUNCTIONAL INTERFACE OF MEASURE-ORIGIN-AMPLITUDES 272

TABLE 132: FUNCTIONAL INTERFACE OF SCREEN-ORIGIN-DBAMPLITUDE-
BY-EXISTING-DBAMPLITUDE 273

TABLE 133: FUNCTIONAL INTERFACE OF MEASURE-ARRIVAL-AMPLITUDES
FOR OBSERVED ARRIVALS 274

TABLE 134: FUNCTIONAL INTERFACE OF SCREEN-ARRIVAL-DBAMPLITUDE-
BY-EXISTING FOR OBSERVED ARRIVALS 275

TABLE 135: FUNCTIONAL INTERFACE OF MEASURE-ARRIVAL-AMPLITUDES
FOR FIRST MOTION 276

TABLE 136: FUNCTIONAL INTERFACE OF SCREEN-ARRIVAL-DBAMPLITUDE-
BY-EXISTING FOR FIRST MOTION 277

TABLE 137: FUNCTIONAL INTERFACE OF COMPUTE-TF 278
r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

0 1

I D C D O C U M E N T A T I O N
TABLE 138: FUNCTIONAL INTERFACE OF SCREEN-TF-BY-EXISTING-TF 279

TABLE 139: FUNCTIONAL INTERFACE OF COMPUTE-TMF 280

TABLE 140: FUNCTIONAL INTERFACE OF SCREEN-TMF-BY-EXISTING-TMF 281

TABLE 141: FUNCTIONAL INTERFACE OF COMPUTE-SPLP 282

TABLE 142: FUNCTIONAL INTERFACE OF SCREEN-SPLP-BY-EXISTING-SPLP 282

TABLE 143: FUNCTIONAL INTERFACE OF MAKE-SMULT 283

TABLE 144: FUNCTIONAL INTERFACE OF SCREEN-CEPPKS-BY-EXISTING-CEPPKS 284

TABLE 145: FUNCTIONAL INTERFACE OF SCREEN-SPVAR-BY-EXISTING-SPVAR 285

TABLE 146: FUNCTIONAL INTERFACE OF COMPUTE-COMPLEXITY 286

TABLE 147: FUNCTIONAL INTERFACE OF SCREEN-COMPLEXITY-BY-EXISTING-COMPLEXITY 287

TABLE 148: INPUT PARAMETERS FOR AUTOMATIC HYDROACOUSTIC

DETECTION PROCESSING 293

TABLE 149: DATA PRODUCED BY AUTOMATIC HYDROACOUSTIC
DETECTION PROCESSING 295

TABLE 150: FUNCTIONAL INTERFACE OF CREATE-HYDRO-DETECTION-INITSITE 296

TABLE 151: FUNCTIONAL INTERFACE OF READ-HYDRO-DETECTION-WAVEFORMS 297

TABLE 152: FUNCTIONAL INTERFACE OF MAKE-HYDRO-DETECTIONS 298

TABLE 153: FUNCTIONAL INTERFACE OF REVISE-HYDRO-DETECTION-ESTIMATES 299

TABLE 154: FUNCTIONAL INTERFACE OF SCREEN-DETECTIONS-BY-TIME 300

TABLE 155: FUNCTIONAL INTERFACE OF MEASURE-HYDRO-DETECTION-FEATURES 301

TABLE 156: FUNCTIONAL INTERFACE OF SCREEN-HYDRO-DETECTIONS 302

TABLE 157: FUNCTIONAL INTERFACE OF SUBMIT-DB-HYDRO-RESULTS 303

TABLE 158: FUNCTIONAL INTERFACE OF MAKE-BEAM-FROM-DATA 306

TABLE 159: FUNCTIONAL INTERFACE OF FIND-TRIGGERS 307

TABLE 160: FUNCTIONAL INTERFACE OF MEASURE-HYDRO 310

TABLE 161: FUNCTIONAL INTERFACE OF REVISE-HYDRO-DET-ATTRIBUTES 311

TABLE 162: INPUT PARAMETERS FOR INTERACTIVE HYDROACOUSTIC RECALL PROCESSING 315

TABLE 163: DATA PRODUCED BY INTERACTIVE HYDROACOUSTIC RECALL PROCESSING 316

TABLE 164: FUNCTIONAL INTERFACE OF CREATE-HYDRO-RECALL-INITSITE 318

TABLE 165: FUNCTIONAL INTERFACE OF PROCESS-RECALL-ARRIVAL 319

TABLE 166: FUNCTIONAL INTERFACE OF MEASURE-HYDRO-RECALL-FEATURES 322
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

 D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u

I D C - 7 . 1 . 1 J u n e 2 0

I D C D O C U M E N T A T I O N
TABLE 167: INPUT PARAMETERS FOR HYDROACOUSTIC EVENT
CHARACTERIZATION PROCESSING 326

TABLE 168: DATA PRODUCED BY HYDROACOUSTIC EVENT
CHARACTERIZATION PROCESSING 328

TABLE 169: FUNCTIONAL INTERFACE OF INITIALIZE-NET-SITES 329

TABLE 170: FUNCTIONAL INTERFACE OF PROCESS-ORIGIN-FOR-INITSITE 330

TABLE 171: FUNCTIONAL INTERFACE OF SITE-HYDRO-BLOCKED 333

TABLE 172: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-INITSITE 334

TABLE 173: FUNCTIONAL INTERFACE OF MEASURE-ORIGIN-AMPLITUDES 335

TABLE 174: FUNCTIONAL INTERFACE OF COMPUTE-AMPBEAM-LTA AND
COMPUTE-AMPBEAM-LTA-SQUARED 336

TABLE 175: FUNCTIONAL INTERFACE OF FIND-STAV-MEASURE-FOR-BEAM-NAME 336

TABLE 176: FUNCTIONAL INTERFACE OF SCREEN-EXISTING-HEVCH-PARRIVALS 337

TABLE 177: INPUT PARAMETERS FOR AUTOMATIC INFRASONIC DETECTION PROCESSING 344

TABLE 178: DATA PRODUCED BY AUTOMATIC INFRASONIC DETECTION PROCESSING 346

TABLE 179: RECIPE INFORMATION INITIALIZED FOR INFRADET PROCESSING 348

TABLE 180: FUNCTIONAL INTERFACE OF INIT-AMPLITUDE-RECIPE 349

TABLE 181: FUNCTIONAL INTERFACE OF GET-INFRA-WAVEFORMS 349

TABLE 182: FUNCTIONAL INTERFACE OF FUNCTIONS USED TO GENERATE
PRIMARY DETECTION SPACE (PDS) 354

TABLE 183: FUNCTIONAL INTERFACE OF INFRA-BEAM-FROM-SCORE-BOARDS 357

TABLE 184: AUXILIARY BEAMS CREATED AND WRITTEN BY
AUTOMATIC INFRASONIC DETECTION 358

TABLE 185: FUNCTIONAL INTERFACE OF FUNCTIONS USED TO GENERATE
COINCIDENCE DETECTION SPACE (CDS) 359

TABLE 186: FUNCTIONAL INTERFACE OF INSTRUMENT-RESPONSE-FILES-EXIST? 364

TABLE 187: FUNCTIONAL INTERFACE OF MEASURE-INFRA-AMPLITUDE 365

TABLE 188: FUNCTIONAL INTERFACE OF INFRA-FIR-FILTER-DATA 368

TABLE 189: FUNCTIONAL INTERFACE OF INFRA-CROSS-CORRELATE-PAIRS 369

TABLE 190: FUNCTIONAL INTERFACE OF INFRA-GENERATE-SLOWNESS-PLANES-CC 371

TABLE 191: FUNCTIONAL INTERFACE OF INFRA-PEAK-EVAL-SLOW-PLANES 373

TABLE 192: FUNCTIONAL INTERFACE OF INFRA-BEAM-FROM-SCORE-BOARDS 378
r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

0 1

I D C D O C U M E N T A T I O N
TABLE 193: FUNCTIONAL INTERFACE OF WRITE-DB-BEAM 379

TABLE 194: FUNCTIONAL INTERFACE OF SUBMIT-CONTAINER-DB (WFDISC) 380

TABLE 195: DBCONTAINERS CREATED BY CREATE DBCONTAINERS 383

TABLE 196: PARAMETERS EXTRACTED BY EXTRACT PARAMETERS 384

TABLE 197: FUNCTIONAL INTERFACE OF DELETE-REDUNDANT-DET-OBJECTS 386

TABLE 198: FUNCTIONAL INTERFACE OF SCREEN-INFRA-DBARRIVALS-BY-EXISTING 387

TABLE 199: FUNCTIONAL INTERFACE OF SCREEN-INFRA-DBDETECTS-BY-EXISTING 389

TABLE 200: FUNCTIONAL INTERFACE OF SCREEN-INFRA-DBINFRA_FEATURES-BY-EXISTING 390

TABLE 201: PARAMETERS EXTRACTED AND SYMBOLS SET FOR MEASURE-INFRA-AMPLITUDE 393

TABLE 202: FUNCTIONAL INTERFACE OF CREATE-SECONDARY-BEAM-ELEMENT-OBJECT 395

TABLE 203: FUNCTIONAL INTERFACE OF CREATE-SECONDARY-BEAM-RECIPE-CONTAINER 396

TABLE 204: FUNCTIONAL INTERFACE OF MEASURE-AMPLITUDE 397

TABLE 205: FUNCTIONAL INTERFACE OF SELECT-DBAMPLITUDE-OBJECT-TO-REPORT 399

TABLE 206: FUNCTIONAL INTERFACE OF SUBMIT-CONTAINER-DB 402

TABLE 207: FUNCTIONAL INTERFACE OF DEPART-WITH-GRACE 403

TABLE 208: INPUT PARAMETERS FOR SEGMENT ARCHIVING PROCESSING 409

TABLE 209: DATA PRODUCED BY SEGMENT ARCHIVING PROCESSING 411

TABLE 210: FUNCTIONAL INTERFACE OF PROCESS-ORIGINS 414

TABLE 211: FUNCTIONAL INTERFACE OF PROCESS-ORIGIN 414

TABLE 212: FUNCTIONAL INTERFACE OF COMPUTE-SITE-ORIGIN-TI 417

TABLE 213: FUNCTIONAL INTERFACE OF COMPUTE-TI-PARAMETERS 418

TABLE 214: FUNCTIONAL INTERFACE OF READ-WAVEFORMS 419

TABLE 215: FUNCTIONAL INTERFACE OF COMPUTE-ORIGIN-BEAMS 420

TABLE 216: INPUT PARAMETERS FOR QUALITY CONTROL STATISTICS PROCESSING 425

TABLE 217: DATA PRODUCED BY QUALITY CONTROL STATISTICS PROCESSING 426

TABLE 218: FUNCTIONAL INTERFACE OF PROCESS-QCSTATS 426

TABLE 219: FUNCTIONAL INTERFACE OF FIND-MISSING-DATA 428

TABLE 220: INFORMATION EXTRACTED FROM EACH WFDATA OBJECT’S MASK 429

TABLE 221: FUNCTIONAL INTERFACE OF MEASURE-DATA-AVAILABILITY 430

TABLE 222: INFORMATION STORED IN EACH QC-STATS OBJECT 431
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

 D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u

I D C - 7 . 1 . 1 J u n e 2 0

I D C D O C U M E N T A T I O N
TABLE 223: FUNCTIONAL INTERFACE OF WRITE-QCSTATS 432

TABLE 224: INTERNAL PARAMETERS OF FIND-MISSING-DATA 434

TABLE 225: ATTRIBUTES SET IN QC-STATS OBJECT 435

TABLE 226: FUNCTIONAL INTERFACE OF WRITE-QCSTATS 436

TABLE 227: ATTRIBUTES POPULATED IN QC-STATS OBJECT 437

TABLE 228: INTERNAL PARAMETERS OF MEASURE-DATA-AVAILABILITY 439

TABLE 229: DATABASE TABLES USED BY EACH DFX APPLICATION 443

TABLE 230: DATABASE ATTRIBUTES WRITTEN BY SEISDET 445

TABLE 231: DATABASE ATTRIBUTES WRITTEN BY ORIGINBEAM 445

TABLE 232: DATABASE ATTRIBUTES WRITTEN BY BOTF 446

TABLE 233: DATABASE ATTRIBUTES WRITTEN BY INTSEISRCL 446

TABLE 234: DATABASE ATTRIBUTES WRITTEN BY AUTOSEISRCL 447

TABLE 235: DATABASE ATTRIBUTES WRITTEN BY DPSNR 447

TABLE 236: DATABASE ATTRIBUTES WRITTEN BY NOISEAMP 448

TABLE 237: DATABASE ATTRIBUTES WRITTEN BY SEISEVCH 448

TABLE 238: DATABASE ATTRIBUTES WRITTEN BY HYDRODET 449

TABLE 239: DATABASE ATTRIBUTES WRITTEN BY INTHYDRORCL 450

TABLE 240: DATABASE ATTRIBUTES WRITTEN BY HYDROEVCH 450

TABLE 241: DATABASE ATTRIBUTES WRITTEN BY INFRADET 451

TABLE 242: DATABASE ATTRIBUTES WRITTEN BY SEGARCH 452

TABLE 243: DATABASE ATTRIBUTES WRITTEN BY QCSTATS 452
r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

0 1

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
About th i s Document

This chapter describes the organization and content of the document and includes

the following topics:

■ Purpose

■ Scope

■ Audience

■ Related Information

■ Using this Document
e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1 i

S o f t w a r e
I D C D O C U M E N T A T I O N

ii
About th i s Document

PURPOSE

This document describes the design of applications using the Detection and Feature

Extraction (DFX) software of the International Data Centre (IDC). The software is a

computer software component (CSC) of the Automatic Processing Computer Soft-

ware Configuration Item (CSCI). The DFX applications described in this document

are designed to be part of a pipeline processing unit or to be invoked from within

the Analyst Review Station (ARS). This document describes the applications that are

currently used in IDC operations.

SCOPE

This document describes the architecture and detailed design of the DFX applica-

tion software including its functionality, components, data structures, high-level

interfaces, method of execution, and underlying hardware.

AUDIENCE

This document is intended for all engineering and management staff concerned

with the design and requirements of all IDC software in general and of DFX in par-

ticular. The detailed descriptions are intended for programmers who will be devel-

oping, testing, or maintaining DFX applications.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
RELATED INFORMATION

The following documents complement this document:

■ Database Schema [IDC5.1.1Rev2]

■ Configuration of PIDC Databases [IDC5.1.3Rev0.1]

■ IDC Processing of Seismic, Hydroacoustic, and Infrasonic Data [IDC5.2.1]

■ Configuration of PIDC Processing Data Files [IDC6.2.4]

See “References” on page 453 for a list of documents that supplement this docu-

ment. The following UNIX manual (man) pages apply to the existing DFX software:

■ DFX (1)

■ libscheme (3)

■ libhydro (3)

■ libinfra (3)

USING TH IS DOCUMENT

This document is part of the overall documentation architecture for the IDC. It is

part of the Software category, which describes the design of the software. This

document is organized as follows:

■ Chapter 1: Overview

This chapter provides a high-level description of DFX applications, includ-

ing its functionality, components, background, status of development,

and current operating environment.

■ Chapter 2: Architectural Design

This chapter describes the architectural design of DFX, including its con-

ceptual design, design decisions, functions, and interface design.

■ Chapter 3: Shared Functionality

This chapter describes the implementation of functions common to the

various DFX applications including database operations, initializing site

information, reading waveforms, and other common Scheme tasks.
iii

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

iv

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
■ Chapter 4: Seismic Processing

This chapter describes the detailed design of the eight DFX seismic pro-

cessing applications: Automatic Seismic Detection, Automatic Origin

Beam, Interactive Beam-on-the-Fly, Interactive Seismic Recall, Automatic

Seismic Recall, Automatic Depth-Phase SNR, Automatic Noise Amplitude

Estimation, and Automatic Seismic Event Characterization.

■ Chapter 5: Hydroacoustic Processing

This chapter describes the detailed design of the three DFX hydroacoustic

processing applications: Automatic Hydroacoustic Detection, Interactive

Hydroacoustic Recall, and Automatic Hydroacoustic Event Characteriza-

tion.

■ Chapter 6: Infrasonic Processing

This chapter describes the detailed design of the single DFX infrasonic

processing application: Automatic Infrasonic Detection.

■ Chapter 7: Administrative Processing

This chapter describes the detailed design of the two DFX administrative

processing applications: Segment Archiving and Quality Control Statis-

tics.

■ Chapter 8: Database Description

This chapter describes the database tables, attributes, and corresponding

schema that each DFX application uses.

■ References

This section lists the sources cited in this document.

■ Glossary

This section defines the terms, abbreviations, and acronyms used in this

document.

■ Index

This section lists topics and features provided in the document along with

page numbers for reference.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
Convent ions

This document uses a variety of conventions, which are described in the following

tables.

Table I shows the conventions for data flow figures. Each application’s design

chapter contains two or more figures that show the architecture of the application

or function. The figures primarily show control flow and external data flow. Inter-

nal data is represented only as input to functions.

Process symbols are numbered with the exception of trivial or self-evident pro-

cesses. The top-level processes are numbered as [X.Y], where X is the application

number (see Table 1 on page 10) and Y is the process number. These numbers

have corresponding sections in the general descriptions of the processes.

Additionally, each process symbol has one or two textual elements: The center text

describes the process, and the bottom text specifies the name of the function used.

If the process consists of several functions or inline Scheme code, the bottom text

is left blank.

Process symbols that are highlighted (via thick lines) have an additional detailed

description. The application and process numbers are included in the heading of

the detailed description and are shown in the Table of Contents. Each detailed

description has an architectural diagram showing the subprocesses that make up

the function. The subprocesses are numbered as [X.Y.Z], where X is the application

number, Y is the process number, and Z is the subprocess number. Each of these

subprocesses is described in a corresponding subsection.

Table II lists typographical conventions.
v

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

vi

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE I: DATA FLOW SYMBOLS

Description Symbol1

1. Most symbols in this table are based on Gane-Sarson conventions [Gan79].

DFX application (shaded in Chapters 1–3)

process (left)

process that is decomposed in a later figure (right)

external source or sink of data (left)

duplicated external source or sink of data (right)

data store (left)

duplicated data store (right)

 M = memory store

 D = disk store

 Db = database store

control flow

data flow

decision or loop

#

##

orprocess

function

process

function

M M
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
TABLE II: TYPOGRAPHICAL CONVENTIONS

Element Font Example

database table

database table and attribute,
when written in the dot
notation

bold arrival

affiliation.net

database attributes

processes, software units,
and libraries

user-defined argument
names and variables used in
parameter (par) files or pro-
gram command lines

titles of documents

function names in process
symbols

objects and containers

 italics lddate

DFX

delete-remarks object

Database Schema

get-infra-waveforms

wfdata

computer code and output

filenames, directories, and
websites

text that should be typed in
exactly as shown

courier (qc-waveforms wfdata-con
 qc-rec)

DFX-evch.scm

edit-filter-dialog

strings replaced with
appropriate value

<value> DFX <par_name>
vii

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 1: Ove rv iew

This chapter provides a general overview of the DFX software and includes the fol-

lowing topics:

■ Introduction

■ Functionality

■ Identification

■ Status of Development

■ Background and History

■ Operating Environment
e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1 1

S o f t w a r e
I D C D O C U M E N T A T I O N

2

Chapter 1: Ove rv iew

INTRODUCT ION

The software of the IDC acquires time-series and radionuclide data from stations of

the International Monitoring System (IMS) and other locations. These data are

passed through a number of automatic and interactive analysis stages, which cul-

minate in the estimation of location and in the origin time of events (earthquakes,

volcanic eruptions, and so on) in the earth, including its oceans and atmosphere.

The results of the analysis are distributed to States Parties and other users by vari-

ous means. Approximately one million lines of developmental software are spread

across six computer software configuration items (CSCIs) of the software architec-

ture. One additional CSCI is devoted to run-time data of the software. Figure 1

shows the logical organization of the IDC software. The Automatic Processing

CSCI processes data through the following computer software components

(CSCs):

■ Station Processing

This software scans data from individual time-series stations for charac-

teristic changes in the waveforms (detection of onsets) and characterizes

such onsets (feature extraction). The software then classifies the detec-

tions as arrivals in terms of phase type.

■ Network Processing

This software combines arrivals from several stations originating from

one event and infers the location and time of its origin.

■ Post-location Processing

This software computes various magnitude estimates and selects data to

be retrieved from auxiliary stations.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY

Automatic
Processing

Interactive
Processing

Distributed
Processing

Data
Services

System
Monitoring

Station
Processing

Network
Processing

Atmospheric
Transport

Time-series
Analysis

Bulletin Process
Monitoring
and Control

Application
Services

Continuous
Data
Subsystem

Message
Subsystem

Subscription
Subsystem

Data Services
Utilities and

Data
Archiving

Database
Tools

Configuration
Management

Performance
Monitoring

System
Monitoring

IDC Software

Retrieve
Subsystem

Web
Subsystem

Data for
Software

Interactive
Data

System
Monitoring
Data

Automatic
Processing

Distributed
Processing
Data

Data
Services

Data
Management

COTS
Data

Environmental
Data

Post-
location
Processing

Time-series
Libraries

Operational
Scripts

Interactive
Tools

Distributed
Processing
Scripts

Data
Management

Database
Libraries

Data

Data

Event
Screening

Time-series
Tools

Libraries

Radionuclide
Processing

Authentication
Services

Analysis
Libraries

Radionuclide
Analysis

Distributed
Processing
Libraries
3

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

4

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
■ Event Screening

This software extracts a number of parameters that characterize an

event; then a default subset of the calculated Event Characterization

Parameters eliminates the events that are clearly not explosions.

■ Time-series Tools

This software includes various utilities for the Seismic, Hydroacoustic, and

Infrasonic (S/H/I) processing system.

■ Time-series Libraries

This software includes shared libraries to which several modules of the S/

H/I processing system are linked.

■ Operational Scripts

This software provides miscellaneous functionality to enable automatic

processing to function as a system.

■ Radionuclide Processing

This software includes the automated analysis, categorization, and flag-

ging processes for radionuclide data.

■ Atmospheric Transport

This software includes the forward and backward modeling of the trans-

port of particulates by atmospheric movements.

DFX is part of the Station Processing CSC of the Automatic Processing CSCI. How-

ever, there are 14 DFX applications for IDC processing and these are used in several

places; therefore, Figure 1 does not reflect DFX’s entire relationship with the rest of

the IDC software. Most of the applications reside in the station processing, net-

work processing, post-location processing, and event screening categories of the

Automatic Processing CSCI. There are also DFX applications that are used by the

interactive tools in interactive processing. Figures 2, 3, and 4 show the relation-

ships of DFX to the other software components.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
FIGURE 2. RELATIONSHIP OF DFX TO OTHER SOFTWARE UNITS

IN AUTOMATIC PROCESSING

12
9

detections
and featureswfdiscs phase IDs originsdetections

auxiliary
requestwfdiscs

raw
waveforms

auxiliary
request

wfdiscs

raw
waveforms

data

data

raw
waveforms

Data
Continuous

Subsystem
StaPro GA

WaveExpert
Subsystem
Retrieve

Data Station
Continuous

IMS

Station
Seismic

Auxiliary
IMS

Station Processing Network Processing

detections
and features

auxiliary
request

UNIX filesystem
D1 binary files

Origin Beam
DFX

2

raw
waveforms

beams

Detection
DFX

1

Db1 Db2

wfdiscs origins

origins
5

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

6

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
The automatic processing pipeline (Figure 2) includes four DFX applications

(shaded): three automatic detection and feature extraction programs, one each for

seismic, hydroacoustic, and infrasonic detection processing, and the DFX origin

beam application. The numbers in the process symbols in Figure 2 correspond to

the application numbers listed in Table 1 on page 10. Automatic processing begins

with continuous waveforms arriving from the IMS primary stations through the

Continuous Data Subsystem. The detections and features are measured in the DFX

detection applications, which include: Automatic Seismic Detection [1], Automatic

Hydroacoustic Detection [9], and Automatic Infrasonic Detection [12]. In addition to

feature extraction, the seismic and infrasonic DFX applications produce and save

detection beams. The next process in the pipeline, StaPro, classifies detections into

phase types based on the extracted waveform features. StaPro can also make sin-

gle-station locations at seismic stations. The detections are combined in network

processing by the Global Association (GA) applications to hypothesize events and

estimate locations. The DFX origin beam application, Automatic Origin Beam [2],

beamforms seismic waveforms based on the event locations. The beams are saved

for use in interactive analysis. The event hypotheses are also used by the WaveEx-

pert application to form data requests for auxiliary seismic stations. The Retrieve

Subsystem acquires the auxiliary seismic data based on the requests formed by

WaveExpert. These data are then used to refine event locations.

The Analyst Review Station (ARS) in interactive processing (Figure 3) can invoke

three DFX applications (shaded): Interactive Beam on the Fly [3], Interactive Seismic

Recall [4], and Interactive Hydroacoustic Recall [10]. ARS contains functions that

create a message that is sent to the Distributed Application Control System

(DACS). The message contains information specifying the data to be processed,

the DFX application to invoke, the database account, and temporary database

tables. The DACS initiates DFX using the message received from ARS. The primary

data interfaces between ARS and DFX are the temporary database tables. Wave-

forms are read directly from the UNIX filesystem. Any results DFX produces are

written to the temporary database tables (beams are written to the filesystem).

After DFX completes execution, control is returned to ARS by the DACS. Finally,

ARS retrieves the DFX results from the temporary database tables.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
FIGURE 3. RELATIONSHIP OF DFX TO OTHER SOFTWARE UNITS

IN INTERACTIVE PROCESSING

DFX is used throughout automatic post-analysis processing (Figure 4), which is ini-

tiated upon the completion of the analyst review as indicated by the application

Analyst_Log. The process control shown in Figure 4 is actually accomplished by the

DACS, which has been left out of the figure for simplicity. Automatic post-analysis

processing consists of three pipelines. The first pipeline, automatic recall process-

ing, contains five processes, three of which are DFX applications (shaded): Auto-

matic Seismic Recall [5], Automatic Depth-phase SNR [6], and Automatic Noise

Amplitude Estimation [7]. After this pipeline finishes, a final human review is con-

ducted. If the data are found acceptable, control is passed on to two pipelines:

Event Characterization and Segment Archiving. The results are used to create the

Standard Event Bulletin (SEB), a standard product of the IDC. The event character-

ization measures are made by two DFX applications (shaded): Automatic Seismic

waveforms

ARS

Db
Analyst Review database
temporary tables D

binary files,
waveforms

raw
waveforms

beams
pars

10
4

Interactive
DFX

3

DACS
7

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

8

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
Event Characterization [8] and Automatic Hydroacoustic Event Characterization [11].

Some of the results of these processes are used by the Event Screening process to

create scores that can be used to screen out events that are of clear natural origin

and are used to create the Standard Screened Event Bulletin (SSEB). The segment

archiving pipeline consists of a single DFX application: Segment Archiving [13]. This

process creates an archive of the data used to form the event hypotheses in the

Reviewed Event Bulletin (REB) by creating origin beam segments at predicted

arrival times.

FUNCT IONALITY

DFX applications perform a variety of tasks. Their primary functions are to make

detections and to measure features from waveforms. DFX processes data from all

three waveform-based technologies (seismic, hydroacoustic, and infrasonic). In the

current system, DFX is used in automatic station processing, interactive analysis,

and automatic post-analysis processing. In automatic station processing, DFX

detects transient signals and estimates features in the vicinity of these detections.

In interactive analysis, DFX estimates or updates features for detections that have

been modified or added by the analyst. In automatic post-analysis processing, DFX

makes a final update of the detection features, and it makes measurements, based

on event hypotheses, which can be used to characterize the event. DFX is also used

to beamform array data. The beams are saved to the UNIX filesystem for use by

other applications. DFX also performs some administrative tasks such as archiving

data associated to the final event bulletins and computing statistics on waveform

quality.

IDENT IF ICAT ION

The 14 DFX applications are identified in Table 1. The number is used throughout

this document to identify the application. Table 2 matches the DFX applications to

their common abbreviations and the actual file names containing the Scheme

code.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
FIGURE 4. RELATIONSHIP OF DFX TO OTHER SOFTWARE UNITS

IN AUTOMATIC POST-ANALYSIS PROCESSING

Db1 LEB database

seismic
features

Db2 REB database

seismic
features

hydroacoustic
features

origins origins and
features

HydroEvch
DFX

11

SeisEvch
DFX

8

Screening
Event

origins

arrivals arrivals

scores

snr magsorigins origins origins

R
ec

al
l p

ip
el

in
e

Ev
ch

 p
ip

el
in

e
Se

gA
rc

h
pi

pe
lin

e

magsamps

binary files,
D beams

magnitude
EvLoc

estimates
maxsurf

wfdiscsorigins

arrivals
and amps

AutoSeisRcl
DFX

5

DPSNR
DFX

6

NoiseAmp
DFX

7

analyst_log

SegArch
DFX

11

review
final
9

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

10

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 1: DFX APPLICATIONS

Number/Application Name Description

1 Automatic Seismic Detection makes detections and measures features on seis-
mic data and writes detection beams

2 Automatic Origin Beam creates beams using theoretical delays deter-
mined from origins

3 Interactive Beam on the Fly allows an ARS user to create new beams

4 Interactive Seismic Recall allows an ARS user to measure features for
added seismic arrivals

5 Automatic Seismic Recall measures features for analyst-added seismic
arrivals

6 Automatic Depth-phase SNR estimates snr of seismic depth phases

7 Automatic Noise Amplitude
Estimation

estimates seismic noise level at theoretical arrival
times

8 Automatic Seismic Event Char-
acterization

uses seismic data to measure various properties
of events

9 Automatic Hydroacoustic
Detection

makes detections and measures features on
hydroacoustic data

10 Interactive Hydroacoustic
Recall

allows an ARS user to update features for
hydroacoustic arrivals

11 Automatic Hydroacoustic Event
Characterization

uses hydroacoustic data to measure various
properties of events

12 Automatic Infrasonic Detection makes detections and measures features on
infrasonic data and writes time-series that are
based on signal coherence

13 Segment Archiving computes beams and archives data associated to
events

14 Quality Control Statistics makes statistical measures of waveform quality
estimates
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
TABLE 2: ABBREVIATIONS AND SYSTEM NAMES FOR DFX APPLICATIONS

Number/Application Name Abbreviation File Name

1 Automatic Seismic Detection SeisDet DFX-detection.scm

2 Automatic Origin Beam OriginBeam DFX-originbeam.scm

3 Interactive Beam on the Fly BOTF DFX-botf.scm

4 Interactive Seismic Recall IntSeisRcl DFX-int-recall.scm

5 Automatic Seismic Recall AutoSeisRcl DFX-recall.scm

6 Automatic Depth-phase SNR DPSNR DFX-depth-phase-snr.scm

7 Automatic Noise Amplitude
Estimation

NoiseAmp DFX-noiseamp.scm

8 Automatic Seismic Event
Characterization

SeisEvch DFX-evch.scm

9 Automatic Hydroacoustic
Detection

HydroDet DFX-hydro-detection.scm

10 Interactive Hydroacoustic
Recall

IntHydroRcl DFX-hydro-recall.scm

11 Automatic Hydroacoustic
Event Characterization

HydroEvch DFX-evch-hydro.scm

12 Automatic Infrasonic Detec-
tion

InfraDet DFX-infra-detection.scm

13 Segment Archiving SegArch DFX-segarch.scm

14 Quality Control Statistics QCStats DFX-qcstats.scm
11

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

12

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
STATUS OF DEVELOPMENT

This document describes mature software that has been used operationally since

1996 at the Prototype International Data Centre (PIDC). All but three of the DFX

applications listed in Table 1 were included in Release 1; Automatic Depth-phase

SNR (6), Automatic Hydroacoustic Event Characterization (11), and Quality Control

Statistics (14) were introduced in Release 3. The software is undergoing limited

enhancements on a continuing basis.

BACKGROUND AND H ISTORY

D. Wahl of Science Applications International Corporation, Monitoring Systems

Operation, developed DFX to replace the SigPro and Beamer Fortran applications.

These were components in the early PIDC system and provided signal detection

and beam generation for display purposes.

The DFX design was inspired by the example of other system applications such as

ARS and Map that use C-code “building blocks” to provide basic processing func-

tionality to the Scheme command-language environment. Higher level applications

and functionality are constructed with the Scheme language. This architecture

makes it easy to develop and customize applications without requiring recompila-

tion or changes to the program code. With this design philosophy DFX, a single

program, can provide a broad spectrum of signal-processing tasks and is expand-

able as new system requirements arise.

DFX was first used operationally in 1996. It is a current software element of the

PIDC at the CMR in Arlington, Virginia, U.S.A., and the International Data Centre

of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) in Vienna,

Austria. Similar versions of DFX are used by other monitoring systems:

■ United States National Data Center

■ Spanish Earthquake Monitoring System

■ South Korean Earthquake Monitoring System
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
OPERAT ING ENVIRONMENT

The following paragraphs describe the hardware and commercial-off-the-shelf

(COTS) software required to operate DFX.

Hardware

DFX is designed to run on UNIX workstations. DFX applications are fairly resource-

intensive, and typically multiple instantiations of DFX (in the case of station detec-

tion processing, for example) must be distributed over several processors to pro-

cess all of the data from the IMS network in a timely manner. The hardware

required depends on many factors such as the amount and type of data and the

number of detections per day. A small seismic network can be processed on a sin-

gle machine such as a Sun Ultra-5, but a large system, such as the IDC, needs

high-speed, multiple-processor-type systems like a Sun Enterprise. The required

disk space will scale with both the number of beams computed and the duration

that its log-file messages are archived. DFX must have access to the database and

UNIX filesystem.

Commerc i a l -Off -The-She l f So f tware

The software is designed to run using Solaris 7 and ORACLE 8.1.5.
13

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 2: A r ch i tec tu ra l Des i gn

This chapter describes the architectural design of DFX and includes the following

topics:

■ Conceptual Design

■ Design Decisions

■ Functional Description

■ Interface Design
e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1 15

S o f t w a r e
I D C D O C U M E N T A T I O N

16
Chapter 2: A r ch i tec tu ra l Des i gn

CONCEPTUAL DES IGN

The term DFX is often used to refer to the combination of two distinct entities: the

DFX programming environment and a DFX application.

The DFX programming environment is a general purpose signal-processing tool. It

consists of an application programming interface (API), special internal data repre-

sentations, and a large set of functions for data manipulation and processing. It

also provides functions to interface with a relational database.

A DFX application is a script written in Scheme (a dialect of the LISP programming

language) that instructs the DFX API on how to process the data. The DFX pro-

gramming environment can be thought of as a Scheme interpreter with built-in

signal processing and database functionality. The phrase “run DFX on these data”

actually means “invoke the DFX programming environment for the specified data

using a Scheme script (not specified in the original statement).” This document pri-

marily describes the design of the DFX applications (Scheme scripts) used in opera-

tions to perform a variety of functions.

The DFX API adds several important features to standard Scheme. Application and

site configuration parameters are specified following libpar conventions. The DFX

programming environment provides several mechanisms to store and manipulate

data internally in addition to the standard variables (or lists) in Scheme. The two

most important internal data representations are the C variable datastore (CVAR,

pronounced see-var) and generic objects (GObj, pronounced gee-obj). The DFX

API also provides an interface to a relational database through libgdi, and it has

many general and specialized signal-processing functions.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Figure 5 shows the external data exchange used by the DFX API. The API first

loads the application (Scheme) file (a). This file contains the high-level control

instructing DFX on how to process the data. Next, the API loads the application

and station parameters either from the command line or from ASCII files (par files)

located in the filesystem (b). Generally, the Scheme application file instructs DFX to

acquire various information from the database (c). The acquired data usually

include pointers to the waveforms that are to be processed. The waveforms are

read from binary files on the filesystem (d). If needed, DFX loads the travel-time

tables that are also stored on the filesystem (e). After processing, DFX writes the

results from processing to the database (c). If the application produces beams, then

these are written to binary files on the filesystem (d). Finally, DFX writes log mes-

sages to ASCII files recording a variety of information about each process that is

performed (f).

FIGURE 5. DFX EXTERNAL DATA INTERFACE

raw
waveforms

results

beams

Scheme
code

database

c

file
application

DFX
a

files
log

f

files
data

binary
d tables

time
travel-

e

par files
line and

command
parameters:

b

DFX

application and station
configuration
17

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

18

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The following sections describe the data representation in DFX, the types of func-

tions in DFX, the physical design of DFX Scheme applications, and invocation of a

DFX Scheme application.

DFX Data Represen ta t ions

Figure 6 shows DFX’s internal data representations and their relationship to the

external data sources. DFX has four major types of external data: ASCII parameter

files (a), relational database tables (b), binary waveforms (c), and ASCII travel-time

tables (d). These data are loaded into three different types of internal memory. The

parameters in the par files are loaded directly into the CVAR datastore (M2) (see

“CVAR Datastore” on page 20). The database tables and the waveforms (M1) are

placed in generic objects. The travel-time tables are loaded into data structures

defined in libloc (M4). A fourth type of internal memory is Scheme variables or lists

(M3). The Scheme lists are largely used for data manipulation and process control.

Because the waveforms are stored in generic objects and the recipe parameters

stored in the CVAR are also placed in generic objects, most of the data exchange in

and out of the signal-processing functions is through generic objects. The data

exchange with the relational database management system (RDBMS) is also han-

dled with generic objects.

The sections that follow briefly describe the concept of parameters, the CVAR

datastore, and generic objects.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
FIGURE 6. DFX EXTERNAL DATA SOURCES AND INTERNAL DATA
REPRESENTATIONS

application and
station configuration

raw
waveforms

beams

results

pars

control
data

par files
line and

command
parameters:

a

files
data

binary
c

tables
time

travel-
d

various

recipes

predicted
arrival times

Processing
Signal

functions

primary
data

results

CVAR datastoreM2generic objectsM1

libloc data structures
M4 travel times

Scheme variables listsM3

database

b

19

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

20

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Paramete r s

DFX uses parameters (pars) and parameter files (par files) to configure applications

and station-dependent attributes. The pars are used to define a myriad of values

such as station name, type of filter, and detection threshold. The parameters are

assigned a specific value either on the command line or in a par file. The par file is

a set of parameter definitions.

The parameters’ values are assigned by the notation parameter_name=value. To

load a par file, the command par=file is used either on the command line or inside

another par file. Often the values or filenames used to define pars are made by

concatenating other pars. This provides a mechanism to use different par files

based on site-specific information that is provided at run-time.

The par files can also be used to define tables. The tables are delineated with the

key symbols #!BeginTable table-name and #!EndTable. The first row in a table

contains the names of the columns, which are delineated with the pipe symbol

“|”. The column order and number are not formatted. The name of the table must

be as shown for the particular set of parameters described because the tabular for-

mat is converted to a common par format internally as table-name.column-

name[row-number]. Thus, the tabular format may be entered in long-hand nota-

tion just as any other par. Normal parameter specification can be mixed with tabu-

lar parameter specification within a single file.

CVAR Datas to re

DFX stores all pars and UNIX environment variables internally in the CVAR datas-

tore (sometimes referred to as the CVAR table). During operation, the CVAR

datastore contains the current instance of all pars that have been set. Except for a

few parameters, the CVAR datastore is intended as transitory, not historical, stor-

age. The CVAR datastore will generally contain many sets of related parameters

referred to as recipes. These parameters are first transferred to generic objects

before being used by the signal-processing functions.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Gener i c Ob jec t s

DFX represents data internally using objects as defined by the common library

libgobj. These objects are used as a common representation of all types of data

that DFX can manipulate. Objects are data structures that encapsulate related sets

of information. The information is stored in the object’s attributes. An object class

defines the attributes for any instance of an object in that class.

The library libgobj is fully integrated with DFX so that object classes may be

defined, objects may be instantiated, and objects may be manipulated using

Scheme functions. These functions may have objects as input arguments and as

their return values.

Many classes of objects are used within a DFX application. These may be standard

classes defined within libgobj, compiled within DFX, or defined within the DFX

Scheme application.

One general category of generic objects is recipes. These objects encapsulate a set

of parameters used to configure DFX library functions. The recipe parameters are

set in the CVAR datastore from par files in the DFX configuration directory tree.

These par files are called recipe files. The parameters are extracted from the CVAR

datastore and placed into a recipe object by the DFX Scheme functions

init-<recipe_name>-recipe. An example of a recipe is the quality-control rec-

ipe (qc-rec), which contains the parameters that tell libqc how to check and process

the waveforms.

A common type of generic object is the container object, which is used to hold

many generic objects of the same class. For example, a wfdata container is actually

a collection of wfdata objects. This is similar to an array of structures that might be

used in a C program. It is even possible to have a container of containers. Contain-

ers provide a convenient method to store and manipulate the data and are used

throughout the DFX Scheme applications. More information on containers is pro-

vided in “Defining Generic Objects” on page 71.
21

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

22

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
DFX Func t ions

The functions of the DFX Scheme applications are categorized based on the loca-

tion of the function's code as follows: intrinsic functions, global functions, library

functions, and local functions. These categories are described in the sections that

follow.

I n t r i n s i c Scheme Func t ions

The Scheme interpreter used by DFX has a relatively small set of built-in, or intrin-

sic, functions. The most common functions are car, cadr, define, let*,

lambda, set!, null?, list, begin, if, or, and, not, eqv?, string-append,

and map. For information about the Scheme language that describes these func-

tions, see one of the many books on this subject, including [Abe96] and [Fri97].

Globa l Scheme Func t ions

DFX has many built-in Scheme functions that perform common tasks, including

database operations, managing generic objects, and signal processing tasks. These

functions are defined in the DFXdefault.scm file, which is loaded into every

invocation of DFX. They are referred to throughout this document as global

Scheme functions.

DFX L ib ra ry Func t ions

The main signal-processing functions are programmed in C and reside in DFX

libraries. This is done to make the computationally expensive processes as efficient

as possible. The C libraries contain wrapper functions that provide an interface to

Scheme. The libraries define functions that DFX binds to Scheme symbols. To the

application, these symbols appear to act the same as other Scheme functions.

There are 19 local DFX libraries: libamp, libbeam, libcomplexity, libdata, libdb,

libdetect, libfk, libfs, libhydro, libinfra, libio, libonset, libpmcc, libqc, libsplp, libtf,

libthreec, libuser, and libutil.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Loca l Scheme Func t ions

DFX applications define many functions within their Scheme files, which remain

local to the application. These functions are generally specialty functions used only

by the application. Sometimes local functions are defined to make the process flow

easier to follow. In addition, several types of functions are used by many applica-

tions, but are specialized enough that a global version could not be efficiently cre-

ated. These functions are made local to the application. For example, there are five

distinct versions of the function init-net-sites.

St ruc tu ra l Des i gn o f Scheme Sc r ip t s

The following sections describe the general tasks shared by most DFX Scheme

applications and the general structure of the Scheme scripts.

Genera l A lgo r i thm

DFX uses Scheme to control processing and data flow. A DFX Scheme application

initiates many operations, including these common ones:

■ read application parameter data

■ read site-specific parameter files

■ read information from the database

■ read waveforms from the filesystem

■ process data via DFX C library functions

■ save results to the database

Process control is generally more complicated than indicated by these operations

due to loops over various data objects and complicated signal-processing func-

tions. However, almost all applications perform these operations at some time.

(See the individual applications’ design sections in this document for the exact

operations used by each application.)
23

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

24

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Genera l S t ruc tu re o f Scheme
F i l e s

Because Scheme is an interpretive language, functions must be loaded into mem-

ory prior to being executed. Therefore, the general structure of a Scheme applica-

tion is as follows:

;; beginning of Scheme file

define function1 (…)

define function2 (…)

…

define functionX (

 …

 (function1)

 …

 (function2)

 …

)

(functionX)

;; end of Scheme file

In a compiled programming language such as C functionX would be considered

the main program. The last statement in the file, (functionX), tells DFX to exe-

cute the program.

Scheme App l i ca t ion Invoca t ion

Configura t ion

In general, a DFX application consists of a Scheme script and two application par

files. The Scheme file has the name DFX-<application>.scm and the par files have

the names DFX-<application>.par and DFX-site-<application>.par. Some

applications will share either or both of the par files with other applications.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
The application’s par file (DFX-<application>.par) specifies general parameters

that define the system’s configuration. It usually references standard DFX par files

containing system-specific parameters. The parameters specifying the database

and database account and a variety of other general parameters are also set in the

application’s par file. The name of the site par file (DFX-site-<application>.par)

and the name of the Scheme script file (DFX-<application>.scm) are defined in the

application’s par file.

The site par file uses the par command (par=<recipe_file>) to read site-specific

recipe files. The filenames (<recipe_file>) are often character-strings created by

concatenating site-specific parameters (such as sta, NetType, StaType, and Wave-

Type), and thus different recipe files can be read for different stations. Most appli-

cations use a large number of recipe files that cover a variety of functions. (See

[IDC6.2.4] for more information.)

Execu t ing Scheme App l i ca t ions

A DFX Scheme application is initiated by the UNIX command line:

DFX <par_name>=<par_value> … par=DFX-<application>.par

The user must set the parameters specified on the command line (above,

<par_name>) to the particular data being processed. For example, the detection

applications use the station code, the start-time, and the end-time to define the

waveforms to process. The input parameter tables (the first table in the description

of each application in this document) list the parameters that are expected to be

specified on the command line.

DES IGN DEC IS IONS

The following design decisions pertain to DFX.
25

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

26

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Prog ramming Language

The goal of being able to flexibly configure standard signal-processing components

to satisfy several distinct operational requirements lead to the decision to write

applications in an interpretive language so that major signal processing units could

be rearranged without having to recompile the entire system. However, due to the

computationally intensive nature of many of DFX’s signal processing functions,

some functions had to be written in a compiled programming language.

Scheme was chosen as the interpretive language for DFX because of its flexibility

and its convenient memory allocation [Abe96] and [Fri97]. It is also used to config-

ure other IDC applications such as ARS and Map. The signal-processing functions

are written in the C programming language, which was chosen for its efficiency,

maintainability, and portability.

Scheme’s memory management has many advantages over languages such as C or

FORTRAN. For example, the Scheme programmer does not need to explicitly allo-

cate and de-allocate variables. The Scheme environment handles all memory func-

tions; consequently an entire range of common problems related to memory

management is eliminated. For example, many versions of FORTRAN allow the

programmer to “write” outside the bounds of an allocated array during run-time,

corrupting data or program instructions. The situation can be worse in the C lan-

guage where the programmer is responsible for directly allocating and freeing

memory. Here the programmer can free unallocated memory, allow memory to

pass out of scope–known as leaking memory–and introduce a host of other mem-

ory-related problems, which are often difficult to diagnose.

Because the Scheme environment manages the memory, it provides a low-risk

approach for scientific programmers to design or modify the sequence and con-

nectivity of the DFX data handling and signal processing library functions.

Globa l L ib ra r i e s

The software of DFX is linked to the following shared libraries: libscheme, libgobj,

libdataqc, libbeam, libfk, libfilter, libgdi, libtable, libpar, libprob, libspectra, libwav,

libwfm, libloc, libLP, libgeog, libinterp, libresponse, libaesir, and libstdtime.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Database

The RDBMS acts as the data storage center for DFX results. DFX uses the functions

in libgdi to interact with the database. The database used by DFX is the same as for

all of the other software units at the IDC. Different DFX applications read and write

different tables as identified in Table 3 and Table 229.

I n te rp rocess Commun ica t ion (IPC)

DFX does not have true IPC capability. Control flow is achieved through the

tuxshell application. However, data transfer between applications can be accom-

plished indirectly by database tables. Some data (such as the names of database

tables) can also be passed to DFX by the DACS through command-line parameters.

Binary waveforms are read directly from the filesystem using pointers obtained

from the database. For example, ARS creates and populates temporary tables and

passes the database account and table names through the DACS to the interactive

DFX applications by command line parameters. The DFX application reads and

writes to the temporary tables. When DFX finishes, control is passed back to ARS,

and ARS reads the temporary tables to obtain the DFX results.

F i l e sy s tem

DFX uses several types of files from the filesystem. The parameters used to control

data processing are stored in par files (see [IDC6.2.4]). The Scheme commands

that control processing flow are stored in the DFX-<application>.scm file. The

actual waveforms are read from binary files located on the filesystem, and the

beam data are written to the filesystem as binary files. In addition, travel-time

tables are read from ASCII files in the earth-specs/ directory of the configura-

tion tree. DFX also writes informational and error messages to stdout and

stderr, which are typically recorded in log files.
27

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

28

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Des ign Mode l

The design of DFX is primarily influenced by a need for flexibility and timeliness.

Signal processing is computationally intensive, and the processing time must be

kept to a minimum. The combination of the efficient, low-level, C functions and

the flexible Scheme developmental environment is an effective model to accom-

plish the signal processing requirements of the IDC system.

Database Schema Overv iew

DFX uses the ORACLE database for the following purposes:

■ retrieve pointers to binary files that contain waveforms

■ retrieve station geometry, location, and calibration information

■ retrieve previous results for updating

■ retrieve arrival and event related information

■ save results of data processing

Table 3 shows the tables used by current IDC DFX applications. The Name field

identifies the database table. The Mode field is “R” if DFX reads from the table and

“W” if the system writes to the table. Because the DFX applications cover such a

variety of functions, no single application uses all of the database tables listed here.

See “Chapter 8: Database Description” on page 441 for application-specific infor-

mation.

TABLE 3: DATABASE TABLES USED BY DFX

Name Mode Description

affiliation R groups stations into networks or arrays

amplitude R1/W contains arrival-based and origin-based amplitude measure-
ments

amp3c R1/W contains amplitude measurements made on three-component
(3-C) data for a specific detection

apma R1/W contains results of particle motion analysis for a specific
detection
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
arrival R/W contains summary information about arrivals

assoc R contains information that connects arrivals (entries in the
arrival table) to a particular origin

ceppks R1/W contains results of cepstral analysis and includes the ampli-
tude and quefrency of cepstral peaks that are consistent
among multiple phases associated with the same event

complexity R1/W contains the complexity event characterization parameter
estimated by DFX

detection R1/W contains summary information about S/H/I detections

hydro_features R/W contains feature measurements for hydroacoustic data from
DFX

infra_features W contains feature measurements for infrasonic data from DFX

instrument R contains ancillary calibration information

lastid R/W contains counter variables (last value used for keys)

origerr R contains summaries of confidence bounds in origin estima-
tions

origin R contains information describing a derived or reported origin
for a particular event

parrival R1/W contains the predicted arrivals and associations for origin-
based amplitude measures

qcstats W contains waveform quality statistics

sensor R contains calibration information for specific sensor channels

site R contains station location information

sitechan R contains station channel information

splp R1/W contains short-period/long-period energy ratios

spvar R1/W contains the variance of the detrended log spectrum between
fmin and fmax for an arrival identified by arid

thirdmom R1/W contains the third moment of frequency and the percentage
of signal frequency amplitudes greater than the correspond-
ing noise frequency amplitudes for an arrival identified by arid

TABLE 3: DATABASE TABLES USED BY DFX (CONTINUED)

Name Mode Description
29

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

30

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FUNCT IONAL DESCR IPT ION

The DFX applications are used to process three types of waveforms (seismic pro-

cessing, hydroacoustic processing, and infrasonic processing) and to conduct some

administrative processing tasks. Each of the technology groups include various

applications, which generally fall into one of two categories: detection driven or

event driven. Detection-driven processing measures waveform features in the

vicinity of transient signals. Event-driven processing measures features within a

data window predicted from event locations and a signal propagation model.

“Chapter 3: Shared Functionality” on page 39 describes the implementation

design of several tasks that are common to almost all of the DFX applications. The

following paragraphs briefly describe these shared functionality tasks, 12 DFX

applications categorized by technology type, and 2 administrative DFX applica-

tions.

Shared Func t iona l i t y

Each of the DFX Scheme applications is designed to perform specific types of data

processing, however they may perform a number of common tasks. “Chapter 3:

Shared Functionality” on page 39 describes the most common tasks and how they

are accomplished. Common tasks include database operations, initializing sites,

reading waveforms, and common DFX tasks in Scheme.

timefreq R1/W contains the time-frequency measurements for event charac-
terization

wfdisc R/W contains a waveform header file and a description

wftag W links various identifiers (for example, orid, arid, and stassid)
to wfid

1. This table is read for screening purposes only.

TABLE 3: DATABASE TABLES USED BY DFX (CONTINUED)

Name Mode Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Database Opera t ions

DFX reads and writes to the database as a key method for obtaining processing

input and storing output. “Database Operations” on page 40 describes how DFX

database connections are initialized and terminated and how tables are queried,

updated, and written.

I n i t i a l i z i ng S i te s

Most DFX applications need parametric data that are specific to each site. Applica-

tions perform a process known as Site Initialization that retrieves the station-

dependent information. This process creates a special object, called initsite, that

contains the station-related information. The exact elements that are stored vary

from application to application. Four general categories of information are stored

in an initsite object: individual parameters, database objects, recipes, and wave-

form objects. “Initializing Sites” on page 46 describes how Site Initialization is

implemented and exactly what data each application stores.

Read ing Wave fo rms

Most DFX applications operate on waveforms. A standard method of reading and

managing data in DFX has been developed. This method includes creating special

objects that hold the waveform and calibration data, reading the data from the

filesystem, and checking the quality of the data. “Reading Waveforms” on

page 58 describes the general methodology followed by DFX applications.

Common DFX Scheme Tasks

Scheme is the standard language for DFX applications and, like most computer lan-

guages, there is a high amount of flexibility in how to implement various tasks. For

DFX, standard methods have been designed for some of the more common tasks.

“Common DFX Scheme Tasks” on page 71 describes many of the specific con-

structs used to manipulate process control and various data types.
31

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

32

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Se i smic P rocess ing

The majority of the DFX applications process seismic data. These applications

include: Automatic Seismic Detection [1], Automatic Origin Beam [2], Interactive

Beam-on-the-Fly [3], Interactive Seismic Recall [4], Automatic Seismic Recall [5],

Automatic Depth-phase SNR [6], Automatic Noise Amplitude Estimation [7], and

Automatic Seismic Event Characterization [8].

Automat i c Se i smic Detec t ion [1]

This application detects transient seismic signals and measures features in the vicin-

ity of the detections. It also may write detection beams. The exact features esti-

mated depend on the type of instrument and network. The application is called for

a specified seismic station and processing time interval. For each detection, DFX

inserts a record into the detection and arrival tables. Other tables that can be popu-

lated are amplitude, amp3c, apma, wfdisc, and wftag.

Automat i c Or i g in Beam [2]

This application creates beams from waveforms at a seismic station based on event

locations. The application is called for a given time period and a given network of

stations. The application computes time delays used to steer the beam to the event

location for the appropriate phase. The beams are written to the filesystem, and

records that point to the newly created beams are entered into the output wfdisc

table.

I n te rac t i ve Beam-on- the -F l y [3]

This application is designed to allow analysts to create (or update) beams after

adding or modifying an event in ARS. The application is called for a single origin

and a list of stations. It predicts the time delays between array elements from the

origin, station location, and theoretical travel-time tables for the desired phase. It

applies the delays to the waveforms of the array elements and sums the time series

across instruments to form the beam. These beams are written to the filesystem,

and records are entered into a wfdisc table for ARS to read.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
I n te rac t i ve Se i smic Reca l l [4]

This application is designed to allow the analyst to compute features for newly cre-

ated or modified arrivals. The application is called for a set of arrivals that are

stored in a temporary database table and read by DFX. The features are similar to

those estimated in automatic detection processing. The actual measures made are

station dependent but can include arrival time uncertainty, best-beam calculations,

f-k and polarization analysis, signal-to-noise ratios, and various amplitude mea-

sures. The tables that are updated are likewise station dependent but can include:

arrival, detection, amplitude, amp3c, and apma.

Automat i c Se i smic Reca l l [5]

This application is designed to automatically compute features for newly-created

or modified arrivals. A variety of methods may be used to define the set of arrivals

to process; however, in normal operations the set of analyst-added arrivals is used.

The features measured are similar to those estimated in automatic detection pro-

cessing and interactive recall processing. The actual measures made are station

dependent but can include arrival-time uncertainty, best-beam calculations, results

from f-k and polarization analysis, signal-to-noise ratios, and various amplitude

measures. The tables that are updated are also station dependent but can include:

arrival, detection, amplitude, amp3c, and apma.

Automat i c Depth -phase SNR [6]

This application is a post-analysis process that obtains all event-associated depth

phases in a given time interval and computes a specialized signal-to-noise ratio

(snr) value for them. The application is called for a given set of events specified by

a time interval and station network. The depth-phase snr measure is a ratio of the

amplitude in a short interval encompassing a depth-phase arrival to the amplitude

in a short interval preceding the depth-phase arrival. Depth-phase snr should not

be confused with the amplitude table’s snr value, which is the ratio of the long-term

average to a detection’s maximum short-term average. This application inserts

records for each depth phase into the amplitude table.
33

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

34

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Automat i c No i se Ampl i tude
Es t imat ion [7]

This application is designed to estimate noise amplitudes at stations that lack

observed arrivals for an event. The application is called for a given time interval

and station network. The amplitudes are measured over windows predicted to

contain an arrival based on the station-to-event travel time. This measure places an

upper limit on the arrival’s amplitude at the given station and can be used in maxi-

mum-likelihood magnitude estimations. This application inserts records for each

noise measurement into the parrival and amplitude tables.

Automat i c Se i smic Event
Cha rac te r i za t ion [8]

This application is designed to produce measurements that can be used to charac-

terize an event. The application is called for a given time period and station net-

work. Measurements are made at each station for each event that exists within the

given time interval. The estimates include a variety of amplitude measures, time-

frequency measures, third-moment-of-frequency measures, source-multiplicity

measures, first-motion measures, short-period to long-period signal measures, and

complexity measures. This application inserts records into the amplitude, ceppks,

complexity, parrival, splp, spvar, timefreq, and thirdmom tables.

Hydroacous t i c P rocess ing

Hydroacoustic processing includes three DFX applications: Automatic Hydroacoustic

Detection [9], Interactive Hydroacoustic Recall [10], and Automatic Hydroacoustic

Event Characterization [11].

Automat i c Hydroacous t i c
Detec t ion [9]

This application detects transient hydroacoustic signals and measures features in

the vicinity of the detections. The application is called for a specified station (in the

hydroacoustic network) and an interval of time. The detections are made using a

STA/LTA type detector. Many features relevant to hydroacoustics are estimated for
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
each detection. These features include the signal onset, termination, duration, var-

ious amplitude measures, energy distribution estimates, and cepstral parameters.

The features are measured over a suite of frequency bands. For each signal DFX

inserts a record into the detection and arrival tables. DFX inserts a record into the

hydro_features table for each frequency band with measurable energy.

I n te rac t i ve Hydroacous t i c Reca l l [10]

This application is designed so that hydroacoustic features can be measured after

the analyst modifies the onset and termination times of a hydroacoustic arrival or

adds a new arrival. The application is called from within ARS for a set of arrivals

stored in a temporary table. The measurements include arrival times, energy distri-

butions, and cepstral parameters. The estimation process is very similar to that in

automatic hydroacoustic data processing except that it does not attempt to calcu-

late onset and termination times. Instead it uses the times supplied by the analyst

through ARS. It computes features for only one frequency band chosen by the

analyst. DFX updates the records in the arrival and hydro_features table for each

arrival processed.

Automat i c Hydroacous t i c Event
Cha rac te r i za t ion [11]

This application estimates the maximum possible hydroacoustic signal for events

that occur within the ocean basins. The noise level is also estimated at the pre-

dicted time of arrival, which provides a means of validating the signal integrity. The

application is called for a given time interval and network of stations. The time

interval defines which events to use, and the network defines the hydrophone sta-

tions to process. For each origin the application finds all hydrophone stations in the

network that have a clear oceanic path to the event. It predicts an arrival window

at each of these stations based on the origin error ellipse and hydroacoustic travel-

time tables. It computes four amplitude measures within the predicted time win-

dow. These amplitude measures are designed to estimate the noise level and the
35

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

36

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
maximum signal level in the time window in high and low frequency bands. For

each predicted arrival DFX inserts a record in the parrival table and four records into

the amplitude table. The results are used in Event Screening.

I n f r a son i c P rocess ing

Infrasonic processing consists of a single DFX application: Automatic Infrasonic

Detection [12].

Automat i c I n f r a son i c Detec t ion [12]

This application detects transient airborne infrasonic signals and estimates the

numerical values of a variety of features in the temporal vicinity of the detections.

This application is called for a specified infrasonic sensor array (in the infrasonic

network) and an interval of time. The detections are made using a two-stage

detection algorithm. The first stage develops candidate detections by applying a

threshold detection statistic in a multiple hypothesis environment. The first-stage

detection statistic is a measure of the spatial coherence of bandpass-filtered wave-

forms. The second stage declares detections by requiring time coincidence of both

an STA/LTA type energy detector and a refined spatial-coherence detector.

Many features relevant to infrasonic signals are estimated for each declared detec-

tion. These features include the signal peak-energy time, back azimuth, magnitude

slowness, and waveform amplitude, as well as a variety of time- and frequency-

domain features. For each detected infrasonic signal DFX inserts a record into the

detection, arrival and infra_features tables. For each processing time interval DFX also

inserts a group of three auxiliary “beams” into the wfdisc table, together with cor-

responding “.w” files in the UNIX filesystem.

Admin i s t r a t i ve P rocess ing

The administrative processing consists of two functions: Segment Archiving (Seg-

Arch) and Quality Control Statistics (QCStats). SegArch extracts pieces of data that

relate to a given event for later retrieval. QCStats is the only application that is not

directly called, but instead is called from within other DFX applications.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Segment A rch i v ing [13]

This application is designed to extract and store relevant waveforms for each event

in the final reviewed bulletin. The application is called for a time interval and a net-

work of stations. For each origin/station pair DFX creates an origin beam and

writes it to the filesystem. DFX inserts records for each beam into the wfdisc and

wftag tables.

Qua l i t y Cont ro l S ta t i s t i c s [14]

This application is designed to summarize attributes made during processing to

check the quality of the data. The application is called from within the automatic

detection processing applications for the waveforms being evaluated. Statistical

measures concerning the quality of the waveforms are computed and stored in the

database. These measures can be used to evaluate the data quality of a given sta-

tion. DFX inserts a variety of records into the qcstats table.

INTERFACE DES IGN

This section describes DFX’s interfaces with other IDC systems, external users, and

operators.

I n te r f ace w i th Othe r IDC Sys tems

DFX uses the database as the primary interface with other IDC systems. Two sec-

ondary methods are also used for data exchange among applications: command

line parameters and binary waveform files. The command line parameters are used

to pass DFX the information needed to initiate processing and are typically pro-

vided through a tuxshell process. These parameters can include the name of the

application par file, some database tables, time intervals, and station codes. The

raw waveforms are read from the UNIX filesystem, and beams produced by DFX

applications, if any, are written to the UNIX filesystem. The pointers to these wave-

forms are stored in the wfdisc table.
37

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

38

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
I n te r f ace w i th Ex te rna l Use r s

DFX produces many of the results that are later used to create IDC external prod-

ucts, but external users have no interaction with DFX itself.

I n te r f ace w i th Opera to r s

DFX communicates with the system operator primarily through log files created

during program execution. DFX also returns an exit status code that can be used by

the DACS to alert the operator of potential problems.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 3: Sha red Func t iona l i t y

This chapter describes several tasks that are shared by many or all of the individual

DFX applications:

■ Database Operations

■ Initializing Sites

■ Reading Waveforms

■ Common DFX Scheme Tasks
e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1 39

S o f t w a r e
I D C D O C U M E N T A T I O N

40
Chapter 3: Sha red Func t iona l i t y

DATABASE OPERAT IONS

The database is the main interface between DFX and other processes at the IDC.

This section describes the general method that DFX uses to communicate with the

database. The specifics can vary among applications (see “Database Description”

on page 441 for database table usage of each application).

Almost all DFX applications use the following five basic operations when interact-

ing with the database:

■ open database

■ query database

■ check for duplicate objects

■ update or insert objects

■ close database

To open the database an application initializes a connection to the appropriate

ORACLE database account. After a connection has been established, queries for

data can be made from the tables contained in the account. Data are saved to the

database by either updating existing records or inserting new records. Finally, the

database connection is closed before exiting the DFX application. These steps are

described in the following sections. The actual communication with the ORACLE

database is accomplished through the common C libraries libgobj and libgdi. This

document does not describe the internal design of these libraries, but instead

describes the Scheme language steps that DFX applications generally follow to

interact with the database.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
Open ing and C los ing the Database

The application must establish a connection to the database before any data can

be read or written. This is accomplished using the global DFX Scheme function

open-db. This function takes no arguments and is usually executed near the

beginning of the DFX application. This function uses two parameters (database-

vendor and database-account) from the CVAR datastore. The database account is a

character-string with the format “account/password@database”. Typically the data-

base account is specified in the application’s par file by a parameter defined in the

system-spec configuration tree (see [IDC6.2.4], [IDC5.1.3Rev0.1]).

The database connection remains open until it is closed by the global DFX Scheme

function close-db. If the database has been updated, then prior to closing the

database one of two actions should be taken: either the additions to the database

should be saved using commit-db, or they should be discarded using rollback-

db. These functions (close-db, commit-db, and rollback-db) do not take

arguments and assume that the database connection is open.

Query ing the Database

Records are retrieved from the database by the global DFX Scheme function

query-for-containers. The function takes the object class name and a query

character-string as input and returns an object container. The generic implementa-

tion is as follows:

(set! <type>-con (query-for-container

 (say-<type>-object-class) query))

where <type> is the name of the desired object, say-<type>-object-class is

the function that provides the object’s identification character-string, and query is a

character-string containing an SQL command. The function returns an object con-

tainer. There is an object in the container for every record returned by the database

query.
41

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

42

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
The query is a character-string that follows SQL conventions. It has the general

form “SELECT … FROM … WHERE …” (see [IDC5.1.2] for more information on the

SQL language).

The objects returned by query-for-container are often referred to in the code

as dbobjects. A dbobject is created in Scheme using the appropriate say-<type>-

object-class function (see “Defining Generic Objects” on page 71). A dbobject

type corresponds to a database table definition; that is, the components of the

dbobject have a one-to-one correspondence with the attributes in the database

table. For example, a dbaffiliation object has the attributes net, sta, lddate corre-

sponding to the attributes in the affiliation table of the database. Other types of

objects can also be used in the query-for-container function. For example,

the wfdata object does not correspond to a specific table, but instead contains

attributes from several tables. The query-for-container function will populate

the components of the object that correspond to attributes listed in the SELECT

command of the query.

The function query-for-container is usually called from a wrapper function

within the DFX application. The wrapper function is named query-for-<obj>-

by-<field> where <obj> is the type of the intended output object, and <field> is

the attribute (or attributes) used to constrain the query. For example, a query func-

tion that returns a dbsite container based on a station list and a time would be

called “query-for-dbsite-by-sta-time”.

The main purpose of the wrapper function is to prepare the query. A query has

three parts: attributes to return, tables to use, and constraints to apply. The

attributes to return are chosen to correspond to the components of the object

type. The table names are generally retrieved directly from the CVAR datastore.

The values that constrain the query are generally passed into the wrapper as argu-

ments. Although an object may have many components corresponding to

attributes from a database table, only the attributes that are specified in the

SELECT command will be populated as a consequence of the query.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
Sc reen ing Database Conta ine r s

For a variety of reasons DFX applications may process the same data more than

once. In automatic detection processing, time windows overlap to ensure that sig-

nals that occur at the edge of a time segment are detected, but this can cause two

DFX invocations that operate on adjacent time segments to find the same detec-

tion. Occasionally problems in operations may require that applications be re-run,

or the user may re-run a portion of data offline. Any of these situations can cause a

DFX application to form entities that already exist in the database. However,

records describing the same phenomenon must not be duplicated in the database.

The process of discarding DFX objects because they are duplicates or because they

do not meet some criterion is referred to as “screening.” Two types of screening

occur in DFX applications: internal and external. Internal screening removes objects

that are either redundant within the current execution or do not meet some crite-

ria. This process is described in “Common DFX Scheme Tasks” on page 71. Exter-

nal screening checks for objects produced in the current run that correspond to

records existing in the database. This screening process is generally conducted in

applications that insert new data into the database.

DFX has many screening functions with various names. The convention for naming

screening functions is to begin with the word screen. External screening functions

contain the word existing. Screening functions’ names that do not contain the

word existing indicate that they do internal screening.

The functions that perform the external screens take many forms, but follow the

same general steps. The database table that contains the type of objects to be

screened is queried for all records that could possibly match the objects created by

the current application. This query is generally based on the time interval being

processed or the station code. The returned database container is checked against

the internal container. The criteria that establish a match varies depending on the

object type. Detections are generally matched based on times within a certain tol-

erance whereas objects created in event characterization are generally matched

based on origins and stations. When a match is found the object is removed from

the current container. The container that only has objects that were not found in

the database is returned to the calling function.
43

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

44

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
Many of the screening functions are actually wrapper functions to the global DFX

Scheme function screen-container-by-existing-container. This function

is implemented by

(screen-container-by-existing-container con query

 compare)

where con is the container to be screened and query is a character-string con-

structed following the same method described in “Querying the Database” on

page 41. The third argument, compare, is a symbol bound to a function that does

the actual comparison between objects. The function compare takes two objects

as input and returns t if it determines that the objects are equivalent and nil oth-

erwise. If the objects are found to be equivalent, then screen-container-by-

existing-container removes the object from the input container. The con-

tainer is returned after all objects have been compared.

Wri t ing to the Database

When DFX writes its results to a database, it either modifies existing records or

inserts new records depending on the application. Detection applications generally

create new records while recall applications fill null-value fields of existing records.

All information submitted to the database must first be placed in a dbobject or a

dbobjects container, that is, a dbcontainer (see “Querying the Database” on

page 41 for the definition of a dbobject). For example, to enter a new record into

the arrival table from a detection object, a dbarrival object must be created using

the DFX/libdb function create-dbarrival-from-detection.

Applications that generate new database records and do not update records use

the global DFX Scheme functions submit-container-db and submit-object-

db. These functions insert the information from the dbobjects into the database.

The functions are implemented with the following Scheme code:

(submit-container-db db<name>-con table)

(submit-object-db db<name> table)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
where db<name> refers to the database objects and table is the name of the out-

put database table. One database record is inserted for each object in the con-

tainer.

Two methods are used in DFX to update the database. If all of the records to be

updated already exist in the database then the application can use the SQL com-

mand update. This is accomplished by creating a character-string that contains

the UPDATE command. The string has the general form “UPDATE … SET …

WHERE …” (see [IDC5.1.2] for more information on the SQL language). This com-

mand is executed by the following Scheme code:

(query-for-status (say-count-object-class)

 update-command)

where update-command is the SQL string. Applications that update existing

records but sometimes may also insert new database records will have a function

called update-or-insert-<type>-by-<field>, where <type> is either object or

container and <field> is the database attribute used to find pre-existing records.

An example would be

(update-or-insert-container-by-arid con table arid)

where con is the dbcontainer, table is the name of the database table to update,

and arid is a list of arrival identifiers from the dbcontainer. The function first cre-

ates a character-string that contains the WHERE clause of an SQL command. The

WHERE clause should specify only records that match the new container contents.

The function returns the number of records in the database that match the WHERE

clause by the global DFX Scheme function say-db-table-count. If this count is

non-zero then the records are deleted from the table by the global DFX Scheme

function delete-from-table-where. Finally the new records are inserted by

the global DFX Scheme function submit-container-db.

Many of the entries submitted to the database are required to carry a unique (pos-

itive) integer-valued identification number, which can be used as a primary key in

later database queries. A few examples of the types of these identification num-

bers are: arids, ampids, parids, and wfids. The arids are arrival identification num-

bers, one for each detection declared in DFX processing. Similarly, the ampids are
45

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

46

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
amplitude identification numbers, and the wfids are waveform identification num-

bers. The numbers are initially obtained by means of the global Scheme function,

query-for-lastid, which returns a numerical value. This value is the identifica-

tion number of the n-th entity requested. For example, if five arids are requested

the numerical value for the fifth (highest) arid is returned. It is implied that the

remaining four arids are the four integers immediately preceding the returned

value. The database table lastid contains the latest type (keyname) of identification

number. To ensure that the identification numbers remain unique, the database is

immediately committed after updating the keyvalue. Thus, the act of requesting

and receiving an allocation of one or more ID numbers via query-for-lastid

causes all pending transactions to be committed. A rollback immediately following

query-for-lastid has no effect on the state of the database.

IN IT IAL IZ ING S ITES

Most DFX applications perform the important task of site initialization. The pur-

pose of this task is to create a special object called initsite that contains site-specific

information. An initsite object is generally created for each station being processed.

If more than one station is being processed, the application may either produce all

of the initsite objects and store them in a container, or it may create and process

one initsite object at a time. The exact information that is stored varies from appli-

cation to application. Four general categories of information are stored in an

initsite object: individual parameters, database objects, recipes, and waveform

objects. These categories and the methods used to produce the initsite objects are

described further in the following sections.

Content s o f I n i t s i t e Ob jec t s

The initsite object may contain individual parameters, database objects, waveform

objects, and recipe objects. The most common parameters are character-strings

describing the station characteristics. Table 4 lists common parameters included in

initsite objects and their descriptions.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
Objects and containers of database-derived information are also stored in initsite.

They contain information pertaining to the site, including sensor, station, or arrival-

related data. Table 5 lists the most common of these items found in the initsite

object. (See “Querying the Database” on page 41 for more information about

dbobjects.)

The most common items in the initsite object are recipe objects. A recipe object

contains processing and control parameters for performing specific tasks. The reci-

pes are generally set in the CVAR datastore by the DFX/libutil function set-

cvar-from-file!. The file is the application’s site par file (named DFX-site-

TABLE 4: PARAMETERS STORED IN INITSITE

Parameter Name Type Description

sta character-string station code

NetType character-string network type (single station or array)

StaType character-string station type (single or 3-C)

WaveType character-string wave type (S/H/I)

actual-start-time real start-time used by application as opposed
to start-time specified by user

actual-end-time real end-time used by application as opposed to
end-time specified by user

TABLE 5: DATABASE OBJECTS STORED IN INITSITE

Object Name Type Description

dbsite GObj site table

dbassoc GObj assoc table

dborigin GObj origin table

arsoc GObj derived from arrival, assoc and
origin tables
47

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

48

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
<application>.par). This file will specify configuration files that contain the recipe

parameters. Recipe objects have default parameter values; only parameters that

differ from the default values need to be specified in the recipe files. Because the

recipes are set in the CVAR datastore, they are cleared before being set if the

initsite object is being created inside a loop over stations. If this is not done, param-

eters meant for the previous station will be used instead of the default values

intended by the user. The recipe values are cleared from the CVAR using the global

DFX Scheme functions delete-<recipe_name>-recipe-cvar. Table 6 lists the

recipes used among the current DFX applications.

TABLE 6: RECIPES STORED IN INITSITE

Recipe Name Type Description

qc-rec GObj parameters for controlling the quality
of data

tirec-con container parameters for computing time inter-
vals

beamrec-con container parameters for steering and filtering
beams and setting detection thresh-
olds

det-rec GObj detector parameters

detbeamrec-con container (see beamrec-con)

amprec-con container amplitude estimation parameters

onset-rec GObj onset estimation parameters

SNRfilt-rec GObj parameters for filtering waveforms for
refined auto-regressive onset time
estimation

beamtirec-con container corresponding beamrec and tirec
objects used to create detection
beams

fk-rec GObj parameters for f-k spectral analysis

polar-rec GObj parameters for measuring polarization
at 3-C stations
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
Waveform objects may also be stored in the initsite object. The waveform objects

are generally initialized when the initsite is created, but the actual waveforms are

not read until later in the application; they are listed in Table 7. For more informa-

tion about waveform objects see “Reading Waveforms” on page 58.

Table 8 associates the objects found in initsite with each DFX application that

employs the object class.

amp3crec-con container parameters for 3-C amplitude compu-
tations

tm-rec GObj parameters for Threshold Monitoring

smult-rec GObj parameters for computing spectral
variance and cepstral peaks (source
multiplicity analysis)

splp-rec GObj parameters for computing short-
period to long-period ratios in event
characterization

complexity-rec GObj parameters for estimating complexity
of signal in event characterization

tf-rec GObj parameters for performing time-fre-
quency analysis in event characteriza-
tion

hydro-rec GObj parameters for computing hydroa-
coustic features

TABLE 7: WAVEFORM OBJECTS STORED IN INITSITE OBJECTS

Object Name Type Description

wfdata GObj site and wfdisc information

wfmem GObj waveforms

stdbeam GObj contains standard beams

TABLE 6: RECIPES STORED IN INITSITE (CONTINUED)

Recipe Name Type Description
49

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

50

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 8: OBJECTS IN INITSITE PER APPLICATION

Object Name D
FX

 A
pp

lic
at

io
n

Se
is

D
et

O
ri

gi
nB

ea
m

B
O

TF

In
tS

ei
sR

cl

A
ut

oS
ei

sR
cl

D
PS

N
R

N
oi

se
A

m
p

Se
is

Ev
ch

H
yd

ro
D

et

In
tH

yd
ro

R
cl

H
yd

ro
Ev

ch

Se
gA

rc
h

Pa
ra

m
et

er
s

sta X X X X X X

NetType X X X X X X

StaType X X X X X X

WaveType X X X X X

actual-start-time X X X X X

actual-end-time X X X X X

BandType1 X

BandType3 X

D
at

ab
as

e
O

bj
ec

ts

dbsite X X X X X X X X

dbassoc X

dborigin X X

arsoc X X X

W
av

ef
or

m
O

bj
ec

ts

wfdata X X X X X X X X X X X X

wfmem X X X X X X

stdbeam X X X X
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
R
ec

ip
es

qc-rec X X X X X X X X X X X X

tirec-con X X X X X X X X X X

beamrec-con X X X X X X X X X X X

det-rec X X X X X X

detbeamrec-con X

amprec-con X X X X X X X X

onset-rec X X

SNRfilt-rec X

beamtirec-con X

fk-rec X X X

polar-rec X X X

amp3crec-con X X X

tm-rec X

smult-rec X X

splp-rec X

complexity-rec X

tf-rec X

hydro-rec X X

TABLE 8: OBJECTS IN INITSITE PER APPLICATION (CONTINUED)

Object Name D
FX

 A
pp

lic
at

io
n

Se
is

D
et

O
ri

gi
nB

ea
m

B
O

TF

In
tS

ei
sR

cl

A
ut

oS
ei

sR
cl

D
PS

N
R

N
oi

se
A

m
p

Se
is

Ev
ch

H
yd

ro
D

et

In
tH

yd
ro

R
cl

H
yd

ro
Ev

ch

Se
gA

rc
h

51

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

52

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
Crea t ing In i t s i t e Ob jec t s

Two general methods are used to initialize site information. The method used

depends on whether the application is station or event based. The applications that

operate on stations (such as detection processing) initialize a single station at a

time, whereas applications that operate on a given set of events initialize a net-

work of stations. Site initialization consists of creating initsite objects. Each station

has its own initsite object and, therefore, applications that initialize a network of

stations create an initsite container. Table 9 indicates which method is used by each

of the applications.

S ing le S ta t ion In i t i a l i za t ion

The single station approach is straightforward. The application calls an internal

function named create-<application>-initsite. This function takes the station

code as input (there can be additional input arguments depending on the applica-

tion) and returns an initsite object. Figure 7 shows a representative flow diagram.

TABLE 9: METHOD USED TO CREATE INITSITE

Algorithm D
FX

 A
pp

lic
at

io
n

Se
is

D
et

O
ri

gi
nB

ea
m

B
O

TF

In
tS

ei
sR

cl

A
ut

oS
ei

sR
cl

D
PS

N
R

N
oi

se
A

m
p

Se
is

Ev
ch

H
yd

ro
D

et

In
tH

yd
ro

R
cl

H
yd

ro
Ev

ch

In
fr

aD
et

Se
gA

rc
h

Q
C

St
at

s

single station X X X X X X

network of stations X X X X

variation X X

initsite not used X X
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
FIGURE 7. ARCHITECTURE OF CREATE-INITSITE

The standard algorithm for this site initialization method is as follows:

a. Get site configuration filename from the CVAR datastore.

Get table names from the CVAR datastore for affiliation, site, sitechan,

sensor, and instrument tables.

b. Create local recipe object symbols.

c. Set station par in the CVAR datastore (set-cvar! ÒstaÓ sta).

d. Delete old recipes from the CVAR datastore.

e. Get NetType, StaType, and WaveType from the CVAR datastore.

f. Load recipes for station into CVAR datastore using parameters con-

structed from the station name and the site configuration file (set-

cvar-from-file!).

g. Fill recipe objects from the CVAR datastore.

h. Get list of channels from CVAR.

a

data from
Get

CVAR

b

recipes
Initialize

c

CVAR
Set sta

d

recipes
Delete old StaType, and

Get NetType,

WaveType from
CVAR

e

recipes into
Load new

CVAR from
site recipe file

f g

from CVAR
Get recipes

h

list from CVAR
Get channel

i

wfdata
Create

container

j

fill initsite
Create and

object

Return

site, sitechan,
sensor, instrument,
affiliation

Db
53

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

54

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
i. Create wfdata container via query-for-wfdata-by-sta-chan-time.

j. Create and fill initsite object with station code, recipes, NetType, StaType,

WaveType, and wfdata container.

Network In i t i a l i za t ion

The event-driven DFX applications that initialize a network of stations use a differ-

ent algorithm than single-station initialization. The network name is obtained from

the CVAR datastore by the parameter net and corresponds to an affiliation table

network. The application initializes all of the stations belonging to the network by

the local Scheme function initialize-net-sites, which takes an origin con-

tainer as input and returns an initsite container. Figure 8 shows a representative

flow diagram.

The standard algorithm for this network initialization method is as follows:

a. Get network and table names from CVAR.

Get the list of stations from the affiliation table.

b. Create empty dbsite, initsite, wfdata and wfmem containers.

c. Fill dbsite container via query-for-dbsite-by-<xxx>

(see “Querying the Database” on page 41).

d. Fill initsite container via

create-initsite-container-from-dbsite-container.

e. Initialize travel-time tables via initialize-net-tt-tables

(see “Determining Data Time Intervals” on page 64).

f. Estimate time interval needed via compute-net-ti

(see “Reading Waveforms” on page 58).

g. Create and fill wfdata container via

query-for-wfdata-by-sta-chan-time

(see “Querying the Database” on page 41 and “Reading Waveforms”

on page 58).
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
h. Create and fill wfmem container via

query-for-wfmem-by-sta-chan-time

(see “Querying the Database” on page 41 and “Reading Waveforms”

on page 58).

i. Insert wfdata and wfmem containers into initsite container via

fill-initsite-container.

FIGURE 8. ARCHITECTURE OF INITIALIZE-NET-SITES

The initsite container is created using the set of sites in the dbsite container by the

local Scheme function create-initsite-container-from-dbsite-

container. Figure 9 shows a flow diagram of this function. The function loops

over the dbsite container.

site, sitechan,
sensor, instrument,
affiliation

Db

a

data from
Get

CVAR

Return

e

travel-time
Initialize

tables

f

interval for
Get

network

g

container for
Create wfdata

network

h

container for
Create wfmem

network

i

container
Fill initsite

site,
Db affiliation

container by
Fill dbsite

site table
query

c

d

container from
Create initsite

dbsite container

wfdiscDb

lists, dbsite-con,
Initialize sta and chan

initsite-con,
dbarsoc-con,

wfdata, wfmem

b

55

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

56

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 9. ARCHITECTURE OF CREATE-INITSITE-CONTAINER-FROM-DBSITE-
CONTAINER

The following algorithm is performed for each dbsite object:

a. Create local recipe object symbols.

b. Set station name parameter sta in the CVAR datastore.

c. Delete old recipes from the CVAR datastore.

d. Load recipes for station into CVAR datastore using parameters con-

structed from the station name and the site configuration file (set-

cvar-from-file!).

e. Fill recipe objects from the CVAR datastore.

f. Create empty initsite object and fill with dbsite object and desired recipes.

Return

e

from CVAR
Get recipes

c

recipes
Delete old

a

recipes
Initialize

b

CVAR
Set sta

f

fill initsite
Create and

object

recipes into
Load new

CVAR from
site recipe file

d

dbsite objectM over
Loop

dbsites
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
The wfdata and wfmem containers must be inserted into the appropriate initsite

objects. This is accomplished by the local DFX Scheme function fill-initsite-

container. Figure 10 is a flow diagram of this function. The function loops over

the initsite container, and the following algorithm is carried out for each initsite:

a. Retrieve the station code sta from the initsite’s dbsite object attribute.

b. Create a station-specific wfdata container from the station objects in the

original wfdata container.

c. Remove any duplicated wfdata objects from the newly created container.

d. Create a station-specific wfmem container from the station objects in the

original wfmem container.

e. Insert station wfdata and wfmem objects into the current initsite object.

FIGURE 10. ARCHITECTURE OF FILL-INITSITE-CONTAINER

Return

initsite container,
wfdata container,
wfmem container

M
dbsite object
Get sta from

in initsite
object

a b

objects with
Extract wfdata

net = sta

duplicate
Remove

wfdata
objects

c

and wfmem
Place wfdata

containers in
initsite object

e d

objects with
Extract wfmem

for sta

over initsite
Loop

container
57

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

58

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
READING WAVEFORMS

Most DFX applications operate on waveforms. A standard method of reading and

managing waveforms has been developed. There are two classes of objects for

handling waveforms: wfdata and wfmem. The wfdata and wfmem objects must be

created and filled before reading the actual waveforms. After the waveforms are

read, the wfdata objects contain a pointer to the wfmem objects where the actual

time series data are stored. The wfdata and wfmem objects are described in more

detail in the following sections.

Wavefo rm Ob jec t s

wfda ta ob jec t s

The wfdata object stores information from the site, sitechan, sensor, instrument, and

affiliation tables. It also contains pointers to a wfmem object. The wfdata container

is created and filled by the global DFX Scheme function query-for-wfdata-by-

sta-chan-time. The arguments of this function are listed in Table 10. The exact

start- and end-times of the processing interval are not critical here because the

tables that are queried by this function use the time values only to identify dates of

station and instrument modification. The function returns a container that has a

wfdata object for each station/channel pair. Most DFX applications create and store

wfdata containers in the initsite object.

TABLE 10: FUNCTIONAL INTERFACE OF QUERY-FOR-WFDATA-BY-STA-
CHAN-TIME

Argument Name Usage Type Description

sta-list input list of strings station codes

chan-list input list of strings channel codes

start-time input real epoch start-time of
desired interval

end-time input real epoch end-time of
desired interval
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
The wfdata object contains information about the site and the instrument. Table 11

lists the contents of a wfdata object.

site-table input character-string site table name

sitechan-table input character-string sitechan table name

sensor-table input character-string sensor table name

instrument-table input character-string instrument table name

affiliation-table input character-string affiliation table name

n/a returned value container wfdata objects

TABLE 11: CONTENTS OF WFDATA OBJECT

Attribute
Name Type

Source
Table

Name of
Database
Attribute Description

sta character-string site sta station code

chan character-string site chan channel code

staondate integer site ondate first day this record is valid

staoffdate integer site offdate last day this record is valid

lat real site lat latitude of site (deg)

lon real site lon longitude of site (deg)

elev real site elev elevation of site (m)

staname character-string site staname station name

statype character-string site statype station type

refsta character-string site refsta reference station code

TABLE 10: FUNCTIONAL INTERFACE OF QUERY-FOR-WFDATA-BY-STA-
CHAN-TIME (CONTINUED)

Argument Name Usage Type Description
59

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

60

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
dnorth real site dnorth offset in north-south direc-
tion from reference station
(km)

deast real site deast offset in east-west direc-
tion from reference station
(km)

chanondate integer sitechan ondate start day channel informa-
tion is valid

chanoffdate integer sitechan offdate end day channel informa-
tion is valid

chanid integer sitechan chanid channel identifier number

ctype character-string sitechan ctype channel type

edepth real sitechan edepth emplacement depth (m)

vang real sitechan vang sensor orientation angle
from vertical (deg)

hang real sitechan hang sensor orientation angle
clockwise from north (deg)

chandescrip character-string sitechan descrip channel description

senstime real sensor time begin time of sensor record

sensendtime real sensor endtime end-time of sensor record

inid integer sensor inid instrument identifier

sensjdate integer sensor jdate date of sensor record

calratio real sensor calratio calibration update factor

calper real sensor calper period for calibration data

tshift real sensor tshift data time correction

instant character-string sensor instant discrete or continuous flag

insname character-string instrument insname instrument name

TABLE 11: CONTENTS OF WFDATA OBJECT (CONTINUED)

Attribute
Name Type

Source
Table

Name of
Database
Attribute Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
wfmem Ob jec t s

The wfmem object contains the wfdisc table information and the time series data.

The wfmem container is created and filled from the wfdisc table by the global DFX

Scheme function query-for-wfmem-by-sta-chan-time

The arguments of this function are listed in Table 12. The function returns a con-

tainer that has wfmem objects that cover the time period requested for each sta-

tion/channel pair. At this stage the wfmem objects do not contain the waveforms.

The wfmem objects are either created and stored in the initsite object (see “Initial-

instype character-string instrument instype instrument type

band character-string instrument band frequency band

digital character-string instrument digital data type

samprate real instrument samprate nominal sampling rate
(samples/s)

ncalib real instrument ncalib nominal calibration factor

ncalper real instrument ncalper nominal calibration period

insdir character-string instrument dir directory containing instru-
ment response

insdfile character-string instrument dfile file containing instrument
response

rsptype character-string instrument rsptype response type

wfmem pointer to GObj n/a n/a points to waveform mem-
ory object

mask pointer to GObj n/a n/a points to quality-control
mask object

net character-string affiliation net network affiliation

TABLE 11: CONTENTS OF WFDATA OBJECT (CONTINUED)

Attribute
Name Type

Source
Table

Name of
Database
Attribute Description
61

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

62

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
izing Sites” on page 46) or created just before reading the waveforms. Event-

driven applications generally perform the former, and station driven applications

perform the latter.

The start-time and end-time for this function are important because the time and

endtime attributes are part of the wfdisc’s primary key. However, it is better for the

time window to be too large rather than too small to ensure that the wfdisc records

will cover the actual time interval desired. For event-driven processing, the time

interval is found by estimating the minimum and maximum arrival times for all ori-

gins and stations. This is why all event wfmems are read upfront. The time intervals

are determined by computing travel times between all origins and stations by the

local Scheme function compute-net-ti. An extra time segment is added to both

sides of the time interval to ensure that enough data are available for processing

near the interval’s edges. Station-driven processing uses the DFX/libdata function

get-data-interval (“Determining Data Time Intervals” on page 64 for more

information on time interval determination).

The wfmem object contains the wfdisc table information and, once they are read,

the waveforms. Table 13 lists the contents of a wfmem object.

TABLE 12: FUNCTIONAL INTERFACE OF QUERY-FOR-WFMEM-BY-STA-
CHAN-TIME

Argument Name Usage Type Description

sta-list input list of strings list of station codes

chan-list input list of strings list of channel codes

start-time input real epoch start-time of desired
interval

end-time input real epoch end-time of desired
interval

wfdisc-table input character-string wfdisc table name

ex-time input real time extension to ensure
that all wfdiscs are retrieved

n/a returned value container wfmem objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
TABLE 13: CONTENTS OF WFMEM OBJECT

Attribute Type
Source
Table

Name of
Database
Attribute Description

sta string wfdisc sta station code

chan character-string wfdisc chan channel code

time real wfdisc time begin time of wfdisc record

wfid integer wfdisc wfid waveform identifier

chanid integer wfdisc chanid channel identifier

jdate integer wfdisc jdate date of wfdisc record

endtime real wfdisc endtime end-time of wfdisc record

nsamp integer wfdisc nsamp number of samples for
wfdisc

samprate real wfdisc samprate sample rate (samples/s)

calib real wfdisc calib calibration factor

calper real wfdisc calper calibration period

instype string wfdisc instype instrument type

segtype character-string wfdisc segtype segment type

datatype character-string wfdisc datatype data type

clip character-string wfdisc clip data clipped flag

dir character-string wfdisc dir directory of waveforms file

dfile character-string wfdisc dfile waveform filename

foff integer wfdisc foff data file byte offset

commid integer wfdisc commid comment identifier

lddate character-string wfdisc lddate date wfdisc record created

data pointer to time-
series

n/a n/a points to data array
63

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

64

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
Dete rmin ing Data T ime In te rva l s

Before reading waveforms, the desired time interval must be determined. The

method used to find the time interval depends on whether the application is sta-

tion driven or event driven.

Event P rocess ing

For event-driven processing, a rough estimate of the interval is needed to create

the wfmem, but the interval chosen is generally large enough to encompass the

entire set of origins and sites. A much smaller time window (potentially) is needed

for a single origin/station pair. The time interval is determined by the DFX/libutil

function compute-site-origin-ti. The arguments for this function are listed

in Table 14. The function returns a start-time and an end-time (in a list) that

encompass the predicted arrival time of the phase as specified by the time interval

recipe. An extra lead and lag time are added to account for filter edge effects,

beamforming lags, and other data processing issues.

Prior to calling compute-site-origin-ti the travel-time tables must be initial-

ized. An interface to the common library libloc has been developed for use in DFX.

The travel-time tables are initialized with the DFX/libutil function read-default-

travel-time-tables. This function is called by the Scheme language call:

(read-default-travel-time-tables dbsite-con phase-list)

TABLE 14: FUNCTIONAL INTERFACE OF COMPUTE-SITE-ORIGIN-TI

Argument Name Usage Type Description

site input GObj initsite object

origin input GObj dborigin object

tirec-con input GObj time interval recipes

n/a returned
value

list of reals computed start-time and end-
time
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
The travel-time tables for the phases defined in phase-list and the stations in the

dbsite container are read into memory and stored. They can be accessed later by

other DFX/libutil functions.

Sta t ion P rocess ing

In station processing the data and processing time intervals are determined by the

DFX/libdata functions get-data-interval and get-processing-interval,

respectively. The data interval is the entire waveform time segment that is

retrieved. The processing interval is the portion within the data interval that is used

to find detections. The excess data allows for computations such as the STA and

LTA time series to be initialized, and it assures that filter edge effects do not create

artifacts in detection processing. The actual time intervals depend on the data that

are available.

The function get-data-interval takes the three input arguments listed in Table

15. The returned time interval extends the user-specified times. The extended

amount is determined from the parameters data-ltav-stability-fraction, det-ltav-len,

and data-offset-len. These parameters are obtained from recipe files via the CVAR

datastore. A time window known as the “LTA stability length” is used to compute

the time extension amount and is defined as:

data-ltav-stability-len = data-ltav-stability-fraction * det-ltav-len.

The time extension on either side of the interval is:

time-extension = 2 * data-offset-len + data-ltav-stability-len.

The returned interval is passed to read-waveforms which acquires the wave-

forms that are available for this interval (see “Reading Binary Files” on page 69).

The extent of the available data defines the actual data interval. This is used by

get-processing-interval to determine the final processing interval.
65

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

66

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
The function get-processing-interval takes the four input arguments listed

in Table 16. It is invoked after the waveforms are read by read-waveforms (see

“Reading Binary Files” on page 69). The returned time interval begins data-ltav-

stability-len + data-offset-len seconds after the start of the data and terminates

data-offset-len seconds before the end of the data.

The processing interval computed from the above steps differs from the user

requested time interval. The degree to which it differs depends on the data avail-

ability. There are four cases to consider as shown in Figure 11. In the first case, (a),

data are available for the entire extended data interval. This can occur when sta-

tion processing is running behind the data acquisition or when DFX is run offline.

In this case, the actual processing interval is larger than the original requested

interval. In case (b), data are not available after the requested time interval. This

TABLE 15: FUNCTIONAL INTERFACE OF GET-DATA-INTERVAL

Argument Name Usage Type Description

det-rec input GObj detection recipe

start-time input real user specified epoch start-time

end-time input real user specified epoch end-time

n/a returned
value

list of reals computed start-time and end-
time

TABLE 16: FUNCTIONAL INTERFACE OF GET-PROCESSING-INTERVAL

Argument Name Usage Type Description

wfdata-con input GObj waveforms

det-rec input GObj detection recipe

start-time input real user specified epoch start-time

end-time input real user specified epoch end-time

n/a returned
value

list of reals computed processing start-time
and end-time
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
can occur when DFX is running near real-time (typical under normal operational

conditions). The final interval in this case is the same length as the requested inter-

val but shifted by data-offset-len seconds. In case (c), data are available for the

requested time and at later times, but data are not available prior to the requested

interval. This can occur when data do not arrive sequentially. The final interval in

this case is also the same length as the requested time interval as it was in case (b),

but it is shifted in the opposite direction by data-offset-len plus data-ltav-stability-

len seconds. The last case, (d), is an isolated data segment. The final time interval is

smaller than the requested interval. It starts data-offset-len plus data-ltav-stability-

len seconds beyond where the data begins, and terminates data-offset-len seconds

prior to the end of the data. Because of these variations and the effect they have

on screening, results from DFX processing offline can differ slightly from DFX pro-

cessing in operations.
67

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

68

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 11. COMPUTED DATA AND PROCESSING TIME INTERVALS

requested

actual

requested

actual

offset length

stability length

(b) only leading data available

(d) neither leading nor lagging data available

processing interval

data available, but
not part of data interval

data not available

intervening data

data contained in data interval

requested

actual

(a) leading and lagging data available

requested

actual

(c) only lagging data available
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
Read ing B ina ry F i l e s

The waveforms are read by the DFX/libdata function read-waveforms. This

function is called by the Scheme language call:

(read-waveforms wfmem-con wfdata-con desired-start-time

 desired-end-time)

The arguments for the function are listed in Table 17.

The input wfdata container may have multiple objects for a given station/channel

pair, one for each wfdisc record that lies within the time interval. The function

read-waveforms will replace the multiple wfmem objects with a single object

containing the waveforms for the particular station/channel. The modified wfmem

container is set into the wfdata’s wfmem attribute.

The waveforms that are returned by read-waveforms have had the calibration

information in the wfdata objects applied to them. The waveforms are zero pad-

ded, if needed, so that all waveforms start and end at the same time.

Check ing Qua l i t y o f Wave fo rms

After the waveforms are read, most DFX applications check the quality of the data.

The purpose of this process is to find and fix or remove defective data samples and

to discard bad data channels so that they will not degrade the signal processing

results. The data quality is determined by a complex algorithm that records the

TABLE 17: FUNCTIONAL INTERFACE OF READ-WAVEFORMS

Argument Name Usage Type Description

wfmem-con input & output container wfmem objects

wfdata-con input & output container wfdata objects

desired-start-time input real requested start-time of the
data interval

desired-end-time input real requested end-time of the
data interval
69

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

70

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
location of the defective data in “masks,” which are saved as objects within the

wfdata objects. Waveforms that have large masked sections are generally dropped

from further processing by deleting the objects from the waveform container. The

routines that check the quality of the data can also perform some data repairs. The

most common of these routines is the demean option, which removes the DC off-

set.

In DFX applications, the data quality check is accomplished by the DFX/libqc func-

tions qc-waveforms and qc-waveforms-all. These functions are called with

the Scheme language calls:

(qc-waveforms wfdata-con qc-rec)

(qc-waveforms-all wfdata-con qc-rec)

Both functions take a wfdata container and a quality-control recipe object as input

(Table 18). The only difference between the two functions is that qc-waveforms-

all returns all of the waveforms, whereas qc-waveforms deletes waveforms that

are determined to have a large fraction of bad data as identified by the recipe

parameter qc-max-mask-fraction.

TABLE 18: FUNCTIONAL INTERFACE OF QC-WAVEFORMS AND QC-
WAVEFORMS-ALL

Argument Name Usage Type Description

wfdata-con input and output container waveform objects

qc-rec input GObj quality-control parameters

n/a returned value container waveform objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
COMMON DFX SCHEME TASKS

Defin ing Gener i c Ob jec t s

Generic objects are used throughout DFX for holding and transferring most of the

data that are manipulated in the Scheme applications. These generic objects are

often referred to throughout this document as “objects” or “GObjs.” For a general

description of generic objects see “DFX Data Representations” on page 18.

Generic objects store various types of data such as database records, detection

attributes, and recipe parameters. Generic objects are created by the libgobj

Scheme function create-gobj. This function takes two character-strings as input

and returns a pointer to the object. The first character-string is used to name this

instantiation of the object. The second character-string is the class name of the

generic object and corresponds to the class definitions created in the C libraries or

with the Scheme function define-gobj-class. Instead of entering a character-

string directly for the class name, a set of DFX Scheme functions with the naming

convention say-<name>-object-class are used where <name> is the name of

the object class. The following example creates a detection object:

(let ((det (create-gobj

 (make-gobj-name ÒdetÓ ÒobjÓ) (say-det-object-class)))))

The global DFX Scheme function say-det-object-class provides the class

identifier of a detection-class object. The DFX/libutil function make-gobj-name

creates an unique character-string that is used to identify the object internally (the

user does not need to know what this character-string actually is). The function

create-gobj creates the object in memory. The let command then binds the

object to the symbol det, which is used to reference the object in subsequent pro-

cessing. At this point the object has been instantiated, and its attributes contain

only default values.

DFX has several standard object classes. One such class is the vector class, which is

used for data that are best represented by vectors, such as time series or wave-

forms. Vector objects can be manipulated arithmetically. Another standard object

class is the database-connection-object class, which is integrated with libgdi and is
71

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

72

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
used to maintain a database connection instance. Multiple instances of database

connections may be maintained this way. Instances of this class contain function

attributes that are used to interact with the database.

Table 19 lists several common generic object classes available in DFX. Most of the

objects are defined with DFX library functions; however, a few, such as the initsite

object, are defined locally within the application.

TABLE 19: COMMON GENERIC OBJECT TYPES

Object Name
Scheme Function Used to Obtain
Class Name Description

db<table> say-db<table>-object-class objects that correspond to
database tables (see “Database
Operations” on page 40)

dbconnection say-dbconnection-object-
class

object used to establish data-
base connection (see “Data-
base Operations” on page 40)

initsite say-initsite-object-class object containing site -specific
information; definition local to
the application (see “Initializing
Sites” on page 46)

wfdata say-wfdata-object-class object containing sensor infor-
mation (see “Reading Wave-
forms” on page 58)

wfmem say-wfmem-object-class object containing waveforms
(see “Reading Waveforms” on
page 58)

detection say-det-object-class object containing detection
attributes (distinct from dbde-
tection object)

trigger say-trig-object-class object containing trigger
attributes

beam say-beam-object-class object containing beams

beam-rec say-beamrec-object-class object containing beam recipe
parameters
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
The attributes of the generic objects are accessed by two functions: set-gobj-

attr! and extract-gobj-attr. The functions are called by the following

Scheme language calls:

(set-gobj-attr! <object> Ò<attribute_name>Ó <attribute_value>)

(let ((<var> (extract-gobj-attr <object> Ò<attribute_name>Ó))))

where <object> is the generic object that is being operated on. The attribute

names are the same as defined in the object class definition.

The beam object is a common type of object that requires some explanation. The

term “beam” has been generalized throughout the IDC system. A beam is essen-

tially processed waveforms and does not necessarily refer to a “delay and sum”

operation over several channels. Although beam objects are often used to hold tra-

ditional delay-and-sum beams, they are also used to hold filtered data. This allows

the recipes and functions used to filter time-series data to have the same structure

as the recipes and functions used in beamforming.

DFX applications often use multiple generic objects of the same class together in

what is called a “container.” The container is analogous to an array of structures in

a C program. A container object maintains a table of the objects it contains that

can be searched, expanded, partitioned, traversed, and so forth. The container is

created in much the same way as the generic object, but uses the global DFX func-

tion create-keyed-list-container instead of create-gobj. The following

example is a Scheme language call used to create a container:

(let ((<type>-con (create-keyed-list-container

(make-gobj-name Ò<type>Ó ÒconÓ) (say-<type>-object-class)))

The symbol <type>-con is bound to the container and is used to reference it in

subsequent processing.

Many local and global DFX functions return objects or containers. In this case, the

objects or containers do not need to be initialized as previously described. Instead

the symbol name is created with an empty value by the Scheme call:

(let (var nil))
73

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

74

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
An object returned by a function can then be bound to the symbol var using the

set! command.

Loop ing Over Conten t s o f
Conta ine r s

DFX applications often process the objects in a container one at a time. This is

accomplished using the global DFX Scheme function map-container. The follow-

ing example runs the function (function) on each object in the container

object-con.

(map-container function object-con)

I n te rna l Sc reen ing o f Conta ine r s

Objects within containers are checked against a set of criteria at various points

within the application. The objects that fail to meet the criteria are removed from

the container. This process is known as screening. Screening can be external or

internal. External screening checks the objects in the container against duplicate

objects in the database tables. External Screening is described in “Screening Data-

base Containers” on page 43. For internal screening, the criteria differ depending

on the object type and the application, but the types of criteria generally fall into

two categories: screening-by-time and screening-by-attribute.

Screening-by-time removes detections that occur too close in time. The allowable

time interval is set in the parameter files. Screening-by-attribute checks if the

object’s attributes fall within certain bounds. Those attributes that do not are

removed from the container.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
Set t ing and Re t r i ev ing Pa ramete r s
f rom CVAR Datas to re

The CVAR datastore is used to load parameters and recipe tables into a DFX

Scheme application. The parameters and recipe tables include database account

names, input and output table names, and site-specific recipes. The CVAR

datastore can consist of any number of parameters. Many are set upon the invoca-

tion of DFX from the input par file or from the command line directly.

CVAR datastore parameters can also be set from within the Scheme applications.

Two functions are used to accomplish this: set-cvar! and set-cvar-from-

file!. The function set-cvar! is used for setting a single parameter. It is called

by the Scheme language call:

(set-cvar! Òparameter_nameÓ parameter_value)

Parameters that are defined in a file can be set with the function set-cvar-

from-file!. This function is called by the Scheme language call:

(set-cvar-from-file! filename)

Most applications use this function to set the site-specific recipes when creating

the initsite object (see “Initializing Sites” on page 46).

Parameters are retrieved from the CVAR datastore by four libpar functions:

getpar, getspar, mstpar, and mstspar. The functions getpar and mstpar are

used for numeric parameters; getspar and mstspar are used for character-string

parameters. The functions getpar and getspar are used for optional parameters.

That is, if the parameters do not exist, the functions use a default value. The func-

tions mstpar and mstspar are used for required parameters and return an error if

the parameters are not defined in the CVAR datastore (mst is short for “must”).

The recipe objects stored in the CVAR datastore are generally retrieved using func-

tions with names similar to the name of the recipe. For example, the quality-

control recipe is obtained using the function init-qc-rec.
75

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

76

▼

Chapter 3:

Shared Funct ional i ty

S o f t w a r e
I D C D O C U M E N T A T I O N
Recipe objects have default attribute values, which are used when the attributes

are not specified in the configuration files. After a parameter is set in the CVAR

datastore, it will remain there for the entire execution of the DFX run unless explic-

itly cleared. Many DFX applications loop over stations and retrieve recipes for each

one. Because one station may set certain parameters while another uses the

default values, it is important to delete any recipes that may be for previous sta-

tions. This is generally accomplished by the global DFX functions delete-

<name>-recipe-cvar, where <name> is the name of the recipe.

Er ro r Hand l ing

Error handling in DFX Scheme applications is handled by the intrinsic catch and

throw-tag-error functions. These functions are called as follows:

(*catch

 Ôerror-tag-name

 (...the actual processing occurs here...

 (if (checks for error)

 (throw-tag-error

 Õerror-tag-name

 (string-format

 ÒError messageÓ

)

)

);; end of if block

);; end of processing block

);; end of catch block

;; on an error condition, processing control resumes here

The catch function defines an error tag that surrounds a block of code. The func-

tion throw-tag-error is placed inside the error check block, and if it is executed,

causes the catch block that has the same tag as the first argument to throw-

tag-error to return a value of error. The throw-tag-error function’s second
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Shared Funct ional i ty
argument is a character-string containing an error message that is printed prior to

the throw. Nested catch blocks are allowed so that different error conditions can

return control to different blocks.

DFX functions typically return nil or, when a function normally returns a container,

they return an empty container. The following idiom is often used:

(if (container-empty? (do-something arg1 arg2))

 (throw-tag-error Õsome-kind-of-error

 ÒError: cannot do-somethingÓ

)

)

Here the function do-something operates on two arguments and is expected to

return a container, but in this case the returned container is only used as an error

check.

Memory Management

Scheme handles the memory management of its programming environment

through the use of a memory “heap” and a “garbage-collector.” The total mem-

ory allocated to Scheme is referred to as the heap. All variable lists created in the

Scheme application are assigned a portion of the heap. The Scheme garbage-col-

lector automatically identifies non-referenced memory and frees it for use by new

entities. The default heap size is normally sufficient for routine processing, but it

can be set explicitly by the DFX command line switch “-h” (see the DFX UNIX man

page). The heap memory is strictly for Scheme constructs. Generic objects, the

CVAR datastore, and the C library functions handle their own memory even

though they may be bound to Scheme variables.
77

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Chapter 4: Se i smic P rocess ing

This chapter describes the design of DFX seismic processing and includes the fol-

lowing topics:

■ Automatic Seismic Detection [1]

■ Automatic Origin Beam [2]

■ Interactive Beam-on-the-Fly [3]

■ Interactive Seismic Recall [4]

■ Automatic Seismic Recall [5]

■ Automatic Depth-phase SNR [6]

■ Automatic Noise Amplitude Estimation [7]

■ Automatic Seismic Event Characterization [8]
79

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

S o f t w a r e
I D C D O C U M E N T A T I O N

80
Chapter 4: Se i smic P rocess ing

AUTOMATIC SE ISMIC DETECT ION [1]

Automatic Seismic Detection (SeisDet) is a DFX Scheme application that detects

transient seismic signals and extracts features characterizing these detections. The

source code resides in the file DFX-detection.scm. SeisDet is typically called in

the automatic pipeline processing, but it can also be run offline. SeisDet is usually

run by specifying the station, start-time, end-time, and the DFX-detection.par

file on the command line. SeisDet makes detections using an STA/LTA type detec-

tor. For each detection, it computes a series of attributes of the detected signals

specific to seismic processing. SeisDet also produces detection beams to support

subsequent analyst review activities. The results of SeisDet are written to the ampli-

tude, amp3c, apma, arrival, detection, qcstats, wfdisc, and wftag tables.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description includes the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes

■ Detailed Description of Generate and Write TM Beams [1.3]

■ Detailed Description of Generate Pre-existing Arrival Beams [1.4]

■ Detailed Description of Perform Detection Processing [1.5]

■ Detailed Description of Revise Extracted Estimates [1.6]
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
■ Detailed Description of Perform Feature Extraction [1.8]

Genera l Desc r ip t ion

SeisDet was designed to detect transient signals in waveforms from a given seismic

station and time interval. The station can consist of a single sensor station or an

array of sensors. The sensors can be either single-component or three-component

(3-C).

Arch i tec tu re

SeisDet is implemented by a single pass through eight sequential processes (see

Figure 12). The first process initializes the site information for this seismic sensor

station (1.1). Waveforms for this station and time interval are acquired and

checked for quality (1.2). Threshold Monitoring (TM) beams are produced, if

required (1.3). Beams for pre-existing arrivals are also generated, if required (1.4).

Then detection processing is performed (1.5), and initial values of the primary

detection attributes are set in memory (1.6). The next process screens for defective

and redundant detections (1.7). Finally, the features are extracted (1.8), and the

results are written to the database.

SeisDet first accesses the CVAR datastore to extract the station code into the local

symbol sta. Local symbols, initialized to nil, are defined to hold the initsite object

and the wfdata and det containers used during subsequent processing. SeisDet cre-

ates an initsite object for the given date by implementing the local Scheme func-

tion create-detection-initsite. Waveforms are acquired by the function

read-detection-waveforms.

SeisDet then creates and writes TM beams. Detection beams are created for the

pre-existing arrivals without beams for the given station and processing time inter-

val. This process is implemented by the local Scheme function make-pre-exist-

ing-arrival-beams.
81

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

82

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 12. ARCHITECTURE OF SEISDET

beams
TM

required
?

•

amplitude,
amp3c, apma,

detection
arrival,

Exit

yes

no
-initsite

1.1

create-detection

Sites
Initialize

-waveforms

1.2

read-detection

Waveforms
Acquire

-arrival-beams

1.4

make-pre-existing

Pre-existing
Generate

Arrival Beams

-detections

1.5

make

Detection
Perform

Processing

-estimates

1.6

revise-detection

Extracted
Revise

Estimates

-container

1.7

screen-detection

and
Screen Defective

Redundant
Detections

-features

1.8

measure-detection

Feature
Perform

Extraction

Db

-tm-beams

1.3

make-and-write

Write
Generate and

TM Beams

Db wfdisc,
wftag

affiliation,
instrument,

sitechan, wfdisc
sensor, site,

Db
D tm-output-

directory/

waveformsD

waveformsD

waveformsD
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Next, the actual detections are made, and initial values of some primary detection

attributes for each detection are set in memory. These extracted estimates are sub-

sequently revised, if possible, and values for the remaining primary detection

attributes are also estimated and initially set in memory. These attributes include:

onset time, azimuth, slowness, amplitude and period. SeisDet deletes detections that

have parameter values that do not satisfy acceptance criteria, are too close in time

to one another, or are too close in time to existing detections.

The next process estimates a variety of secondary features of each detection. The

features measured depend on the nature of the seismic sensor(s) at the given sta-

tion (single sensor, 3-C, sensor array). This process also makes and saves detection

beams if sufficient waveforms are available. For detections near the end or begin-

ning of a processing interval sufficient waveforms are sometimes lacking. In these

situations, subsequent DFX processing for this station and the next processing

interval (or the prior processing interval in cases where the pipeline is running

backwards) will create the detection beams not already created. For each detec-

tion, a pair of matching dbarrival and dbdetection objects is created, and these

objects are written to the appropriate database tables. Amplitude estimates are

computed and are likewise written to the appropriate database tables.

I nput /Output

SeisDet is called for one station and one time interval at a time. The station code

and start-time and end-time parameters are generally specified on the command

line. The rest of the parameters are set or referenced in the DFX-detection.par

file. The input CVAR datastore parameters used in the Scheme code are described

in Table 20.
83

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

84

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 20: INPUT PARAMETERS FOR AUTOMATIC SEISMIC DETECTION
PROCESSING

Par Name Source Default Value Description

sta command
line

<none> station code

start-time command
line

<none> start-time of the processing
interval

end-time command
line

<none> end-time of the processing
interval

NetType par file <none> network type, as in: “ss”,
”array”, ”larray”

StaType par file <none> station type, as in: “1c”, ”3c”

WaveType par file ÒÒ wave type

(““, ”hydro-”, ”infra-”)

wfdisc-extension-len par file 86400.0 maximum time duration of
“.w” files in which binary for-
mat waveform time series are
stored on the UNIX filesystem

data-output-wftag par file 0 flag for wftag table output:
0 means do not write to wftag
table

detection-site
-recipe-file

par file <none> filename of the site-specific
detection recipes

affiliation-table par file affiliation table containing station and
network affiliations

instrument-table par file instrument table containing generic
(default) calibration informa-
tion about a station

sensor-table par file sensor table containing specific cali-
bration information for physi-
cal channels

site-table par file site table containing site-location
information
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
sitechan-table par file sitechan table containing station-chan-
nel information

in-wfdisc-table par file wfdisc input table containing wave-
form file header and descrip-
tive information

out-amplitude-table par file amplitude output table containing ampli-
tude information generated by
this application

out-parrival-table par file arrival output table containing pre-
dicted arrival information gen-
erated by this application

out-detection-table par file detection output table containing signal
detection information gener-
ated by this application

out-wfdisc-table par file wfdisc output table containing wave-
form file header and descrip-
tive information generated by
this application

out-wftag-table par file wftag output table containing wave-
form mapping information
generated by this application

out-amp3c-table par file amp3c output table containing ampli-
tude estimates (from 3-C sta-
tions) generated by this
application

out-apma-table par file apma output table containing parti-
cle motion analysis information
generated by this application

qcstats-table1 par file <none> table containing statistical
measures of the input wave-
forms developed by the qual-
ity-control processing and
written by this application

TABLE 20: INPUT PARAMETERS FOR AUTOMATIC SEISMIC DETECTION
PROCESSING (CONTINUED)

Par Name Source Default Value Description
85

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

86

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Table 21 lists the output of SeisDet. SeisDet writes the detections but first checks

the database for detections that already exist by comparing detection times. Those

detections that do not already exist are written to the appropriate database tables.

SeisDet also writes detection beams. There are two output entities per beam: a

time-series file (with extension “.w”) and a corresponding record to the wfdisc

table. If the parameter data-output-wftag is set to a non-zero value, a correspond-

ing record is written to the wftag table for each detection beam.

Table 230 on page 445 lists the specific attributes whose values are written by Seis-

Det for each of these database tables.

qcstats-scheme-file1 par file <none> filename containing the
QCStats source code

perform-qcstats par file 0

false

flag for generating and writ-
ing quality-control statistics: 0
means do not collect data
quality statistics

perform-tm-
processing

par file 0

false

flag for generating and writ-
ing TM beams: 0 means do
not perform TM

tm-beam-list2 par file <none> names of TM beams

1. Optional parameter referenced only if quality-control statistical features are collected.

2. Optional parameter referenced only if TM processing is performed

TABLE 20: INPUT PARAMETERS FOR AUTOMATIC SEISMIC DETECTION
PROCESSING (CONTINUED)

Par Name Source Default Value Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The time series for each detection beam is written to the UNIX filesystem in the

directory and filenames specified by the dir and dfile attributes of the wfdisc table.

The directory name is of the form /base/YYYY/JJJ/ where JJJ is the three-digit

Julian day of the year (with leading zeros as required), and YYYY is the four-digit

year for the given input waveforms used to generate the detection beam. The base

directory path is set in the DFX-detection.par file by the data-output-base-

directory parameter.

TABLE 21: DATA PRODUCED BY AUTOMATIC SEISMIC DETECTION
PROCESSING

Name Category Description

returned value application exit status indicates success or failure

amplitude database table waveform amplitude for each detec-
tion

amp3c database table waveform amplitude for each detec-
tion (on a 3-C station)

apma database table particle motion analysis attributes of
each detection

arrival database table arrival attributes of each detection

detection database table detection attributes of each detection

qcstats1

1. This product is generated only if the optional Quality Control Statistics processing is per-
formed.

database table statistical attributes of the waveforms
developed by the quality-control pro-
cedures

wfdisc database table detection beams generated

wftag2

2. This product is generated only if the symbol data-output-wftag is set non-zero.

database table maps arrival tuples to beams

“.w” binary files waveforms

detection-beam time-series data
87

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

88

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This application returns an exit status code value that indicates whether or not the

processing was successful.

Processes

The following processes shown in Figure 12 on page 82 are described in this sec-

tion:

■ Initialize Sites [1.1]

■ Acquire Waveforms [1.2]

■ Generate and Write TM Beams [1.3]

■ Generate Pre-existing Arrival Beams [1.4]

■ Perform Detection Processing [1.5]

■ Revise Extracted Estimates [1.6]

■ Screen Defective and Redundant Detections [1.7]

■ Perform Feature Extraction [1.8]

I n i t i a l i ze S i t e s [1 .1]

SeisDet requires a variety of parameters for describing the stations to be processed,

for acquiring waveforms, and for controlling the processing performed. The

Initialize Sites process acquires the relevant parameters and binds the Scheme sym-

bols required for subsequent processing. This process is implemented by the local

Scheme function create-detection-initsite. The function is called by a

Scheme language code fragment, such as:

(set! initsite-obj (create-detection-initsite sta))

The function requires a single argument, which is described in Table 22.

TABLE 22: FUNCTIONAL INTERFACE OF CREATE-DETECTION-INITSITE

Argument Name Usage Type Description

sta input character-string station code

n/a returned value GObj initsite object
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
This function accesses the CVAR datastore to extract the detection-site-recipe-file,

a variety of database table names, and the start-time and end-time limits of this

processing interval. Table 23 lists the internal symbols that are extracted from the

CVAR datastore.

The local function create-detection-initsite follows the general site initial-

ization model described in “Initializing Sites” on page 46. This function creates,

sets the attributes in, and returns the initsite object based on the recipes from the

CVAR datastore for the specified station and time interval. Table 8 on page 50 lists

those entities contained in the initsite objects created by this function.

If TM processing is required (parameter perform-tm-processing is set to unity) then

the tm-rec is initialized by the Scheme function init-tm-recipe. If onset revision

is required (parameter ons-SNR-filter is set to unity) then both filterbank-con and

SNRfilt-rec are set by the Scheme functions init-filter-bank and init-SNR-

filt-recipe, respectively.

TABLE 23: INTERNAL SYMBOLS FOR INITIALIZE SITES

Symbol Type Description

detection-site-recipe-file character-string filename of the site-specific detec-
tion recipes

start-time real start-time of this processing interval

end-time real end-time of this processing interval

affiliation-table character-string table containing station and network
affiliations

instrument-table character-string table containing generic (default) cal-
ibration information about a station

sensor-table character-string table containing specific calibration
information for physical channels

site-table character-string table containing site-location infor-
mation

sitechan-table character-string table containing station-channel
information
89

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

90

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
A key feature of the process Initialize Sites is the identification of sensor channels

to process. The Scheme function get-detection-channel-list creates a list

of channels that are used in later processing. This list contains the channel names

(for example, “sz” or “be”) found in the beam recipes as well as the types of

channels required for the processing, specifically applied to various combinations

of nettype and statype. For example, f-k spectra are calculated only for arrays (net-

type equal to either “array” or “larray”). Therefore, the f-k recipe must be

evaluated to ensure that the types of channels used for f-k spectra are acquired if

the station is an array. Similarly, 3-C amplitude measurements can be extracted

only from 3-C sensors (statype equal to 3-C). Consequently, the amp3c recipe must

be evaluated to ensure that all three channels of a 3-C sensor are acquired if

statype is equal to 3-C.

This list is used to govern the composition of the wfdata container within the

initsite object. The function is called by the Scheme language code:

(set! chan-list (get-detection-channel-list statype

 nettype wavetype beamrec-con fk-rec polar-rec

 amp3creccon))

The function requires seven arguments, which are described in Table 24.

TABLE 24: FUNCTIONAL INTERFACE OF GET-DETECTION-
CHANNEL-LIST

Argument Name Usage Type Description

statype input character-string station type at this station

nettype input character-string network type in which this
station is grouped

wavetype input character-string wave type (““, ”hydro-
”, ”infra-”)

beamrec-con input container beam recipe objects

fk-rec input GObj f-k recipe object
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The Scheme function query-for-wfdata-by-sta-chan-time returns a wfdata

container for the stations and channels required to perform the processing. An

empty container returned by this function causes DFX to exit. Otherwise, the

initsite attributes are set, and the initsite object is returned. At this point in the pro-

cessing, the wfdata container does not yet contain the waveforms.

Acqu i re Wave fo rms [1 .2]

SeisDet requires waveforms from the stations and channels to be processed to

accomplish detection and feature extraction. The process Acquire Waveforms

obtains the available waveforms in support of subsequent processing. It is imple-

mented by the local Scheme function read-detection-waveforms, which is

called by the Scheme language code:

(read-detection-waveforms initsite)

The function requires one argument, which is described in Table 25.

polar-rec input GObj polarization processing
recipe object

amp3crec-com input container 3-C amplitude estimation
recipe objects

n/a returned
value

list character-strings (station
codes)

TABLE 25: FUNCTIONAL INTERFACE OF READ-DETECTION-WAVEFORMS

Argument Name Usage Type Description

initsite input GObj initsite object

n/a returned value container wfdata objects

TABLE 24: FUNCTIONAL INTERFACE OF GET-DETECTION-
CHANNEL-LIST (CONTINUED)

Argument Name Usage Type Description
91

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

92

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This function follows the general model for acquiring waveforms in DFX, which is

described in “Reading Waveforms” on page 58.

Determining the appropriate time interval in which to acquire waveforms is a criti-

cal facet of DFX processing. Two types of factors are used in determining the

amount of time by which the nominal processing interval must be extended. The

first type are those factors intrinsic to detection processing. These include: (i) the

run-up and run-down times for stable spectral filtering, (ii) the run-up times for the

short-term and long-term averages, and (iii) the margins required for time re-align-

ment of waveforms when beam steering. Depending on the processing parameter

values and nature of the station geometry, one or another of these may dominate

the time extension requirements. The second type are factors controlling sequen-

tial processing of consecutive intervals. Processing can be run either in (i) normal

sequential order or (ii) reverse sequential order (most recent unprocessed wave-

forms processed first) when catching up after a downtime in which waveforms

accumulated. The nature of the extra waveforms needed to satisfy this require-

ment is discussed in “Station Processing” on page 65. Both types of factors con-

tribute to altering the time-duration of the interval over which waveforms are

acquired for the given processing interval. Specialized library routines are invoked

in the course of acquiring waveforms that determine the time-extent of the extra

waveforms at each end of the processing interval. The extra waveforms cause the

detection processing to be time-overlapped from one processing interval to the

next. This may lead to the generation of duplicate detections in successive process-

ing intervals. Consequently, before detection results are written in the database, a

search is performed to ensure that the set of detections to be written does not

include duplicates of detections already in the database. This is discussed in further

detail in “Screen Defective and Redundant Detections [1.7]” on page 98.

The DFX/libqc function qc-waveforms-all checks the quality of waveforms

now contained in the wfdata container, which is filled during this process. If param-

eter perform-qcstats is set to a non-zero value, quality-control statistics are pro-

duced for this processing station and interval, and this information is written to the

qcstats database table.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Genera te and Wr i te TM Beams [1 .3]

If parameter perform-tm-processing is set to a non-zero value, SeisDet can generate

and save TM beams. TM beams are used to monitor the event detection capability

of the primary seismic network. The process Generate and Write TM Beams acquires

the relevant parameters and binds the Scheme symbols required for subsequent

processing.

First, the local Scheme function instrument-response-files-exist? is used

to determine whether the required instrument response files are accessible for

removing instrument response functions from the waveforms. If the required files

are not accessible, an error message is printed, and DFX exits with a fatal status.

The main TM processing is implemented by the local Scheme function make-and-

write-tm-beams. This process is executed only if the parameter perform-tm-pro-

cessing is set to non-zero. The function is called by the Scheme language code:

(make-and-write-tm-beams wfdata-con initsite)

The function requires two arguments, which are described in Table 26.

This function extracts parameters from the CVAR datastore. Then control transfers

to a loop over TM beam recipes. For each TM beam recipe, the function performs

the following steps:

1. Generate the TM beam from the waveforms in the wfdata container in

accordance with the current TM beam recipe.

TABLE 26: FUNCTIONAL INTERFACE OF MAKE-AND-WRITE-TM-BEAMS

Argument Name Usage Type Description

wfdata-con input container wfdata objects

initsite input GObj initsite object

n/a return value logical scalar indicates success (t)
or failure (nil)
93

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

94

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
2. Test whether the generated TM beam is null, and if so, reset the beam

object to a specially generated null beam.

3. Generate the STA, LTA, and SNR time series for the TM beam.

4. Write the TM beam data to the UNIX filesystem.

If errors occur while generating the STA, LTA, or SNR or while writing the TM

beam, an error message is printed, and the loop continues with the next TM beam

recipe.

For more information about this function see “Detailed Description of Generate

and Write TM Beams [1.3]” on page 101.

Genera te P re -ex i s t i ng A r r i va l
Beams [1 .4]

For a given processing time interval and station there are a variety of reasons for

the prior presence of arrivals in the database. These arrivals generally arise from

the extra time-span of actual waveforms processed for each nominal processing

time interval (see “Determining Data Time Intervals” on page 64). For any given

nominal processing interval there is an overlap of waveforms with both the previ-

ous processing interval and the processing interval to follow. These overlaps of

waveforms are present to ensure that signals are detected regardless of where they

occur within the nominal processing interval. The extra waveforms required for the

interval overlap are often insufficient for detection beam generation if the signal

arrival is too close to the end of the nominal processing interval. In this case the

arrival is written to the database without an associated detection beam and the

detection beam is created in the next processing interval.

This process generates and saves detection beams for arrivals that already exist in

the database but do not have beams saved for them. A detection beam is a beam

that maximizes the coherent signal in the sum of the steered (time-aligned to a

given vector slowness) set of waveforms from a group of sensors. The process is

implemented by the local Scheme function make-pre-existing-arrival-

beams, which is called by the Scheme language code:

(make-pre-existing-arrival-beams wfdata-con initsite)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The function requires two arguments, which are described in Table 27.

This function first ensures that only stations with arrays are processed in it. Then, it

extracts parameters from the initsite object and queries the database to generate a

dbarrival container for arrivals that have no detection beams for this station and

this processing time interval. For each dbarrival object in the container this function

performs the following steps:

1. Generate the detection beam from the waveforms in the wfdata con-

tainer in accordance with the information in the beam ti-recipe container,

the detection recipe, and the arrival time and vector slowness parameter

values in the detection object.

2. Write the beam to the appropriate directory and file within the UNIX file-

system.

3. Write a corresponding record to the wfdisc database table.

4. Test whether the generated beam is null; if so, print an error message. If

the parameter data-output-wftag is non-zero, then write a corresponding

record to the wftag database table for each record written to the wfdisc

database table.

For more information about this function see “Detailed Description of Generate

Pre-existing Arrival Beams [1.4]” on page 108.

TABLE 27: FUNCTIONAL INTERFACE OF MAKE-PRE-EXISTING-ARRIVAL-
BEAMS

Argument Name Usage Type Description

wfdata-con input container wfdata objects

initsite input GObj initsite object

n/a returned value list dbwfdisc and
dbwftag objects
95

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

96

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Per fo rm Detec t ion P rocess ing [1 .5]

This process performs detection processing by finding transient signals in the

waveforms. It first beamforms the waveforms to a variety of vector slowness val-

ues defined in the beam recipes. Then, an STA/LTA detector is applied to each

detection beam to find candidate detections (triggers). The triggers are analyzed

and, if they satisfy acceptance criteria, detections are generated. This process is

implemented by the local Scheme function make-detections, which is called by

the Scheme language code:

(make-detections wfdata-con initsite)

The function requires two arguments, which are described in Table 28.

This function performs the following steps:

1. Extract parameters from the initsite object.

2. In a loop over the beam recipes, generate the beam, and set the results

into the symbol beam.

3. Generate the STA, LTA, and their quotient SNR for this beam given the

detection recipe.

4. If this beam is a standard beam, insert it into the standard-beam con-

tainer (which is returned as a side-effect because it is referenced as a field

of the initsite argument).

5. If this beam is a detecting beam then evaluate the beam for triggers by

the DFX/libdet function find-triggers, and return these triggers in a

trigger container.

TABLE 28: FUNCTIONAL INTERFACE OF MAKE-DETECTIONS

Argument Name Usage Type Description

wfdata-con input container wfdata objects

initsite input and output GObj initsite object

n/a returned value container detection objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
6. If the trigger container is not null, (DFX/libdet function find-detec-

tions) evaluate the trigger container. If the triggers satisfy acceptance

criteria for declaration of a detection, return a detection container. See

[IDC5.2.1] for more information about seismic STA/LTA detectors.

For more information about this function see “Detailed Description of Perform

Detection Processing [1.5]” on page 113.

Rev i se Ex t rac ted Es t imates [1 .6]

SeisDet performs detection processing by finding, and measuring both the primary

and secondary attributes of, transient signals in the waveforms. In many instances,

some of the primary attributes initially measured are only roughly estimated. Con-

sequently, refined estimates are required. In addition, several of the primary detec-

tion attributes are not initially measured in the process of declaring detection. The

process Revise Extracted Estimates refines the initially rough estimates and extracts

estimates for those primary detection attributes that have not been set. This is

accomplished via the local Scheme function revise-detection-estimates.

This function is called by the Scheme language code:

(revise-detection-estimates wfdata-con initsite det-con)

This function requires three arguments, which are described in Table 29.

TABLE 29: FUNCTIONAL INTERFACE OF REVISE-DETECTION-ESTIMATES

Argument Name Usage Type Description

wfdata-con input container wfdata objects

initsite input GObj initsite object

det-con input and output container detection objects

n/a returned value container detection objects
97

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

98

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
For the given station and processing time interval this function extracts parameters

from the initsite object and creates a defective-detection container (symbol bad-

det-con). This container is created to hold detection objects that are to be elimi-

nated from the set of input detection objects. In a loop over detection objects this

function performs the following steps:

1. Revise the detection onset time estimate.

2. Estimate the detection amplitude.

3. In the case of array stations, generate an f-k spectrum.

4. In the case of stations with 3-C sensors, perform polarization analysis.

Within this processing loop, if any failures in measurement result, the detection is

deleted, and a warning message about the nature of the failure and the identity of

the deleted detection is printed. This function returns the input detection container

with deleted detections removed from it.

For more information about this function see “Detailed Description of Revise

Extracted Estimates [1.6]” on page 122.

Sc reen Defec t i ve and Redundant
Detec t ions [1 .7]

SeisDet produces detections only where the waveforms support good measure-

ments. Detections for which important parameters cannot be successfully mea-

sured are deemed defective and are discarded. Furthermore, to guarantee that

there are no lost detections at the edges of successive processing intervals, the suc-

cessive processing intervals are overlapped in time. Consequently, a signal may be

detected in two successive processing intervals if it occurs in the time-overlap por-

tions of each processing interval. To prevent redundant detection records in the

database, the detections from each processing interval are screened to eliminate

those that already exist in the database; that is, newly generated redundant detec-

tions are discarded. The process Screen Defective and Redundant Detections accom-

plishes this. It is implemented by the local Scheme function screen-detection-

container. This function is called by the Scheme language code:

(screen-detection-container initsite det-con)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The function requires two arguments, which are described in Table 30.

This function performs the following steps:

1. Screen the detections to eliminate those that fail to meet acceptance cri-

teria or are too closely spaced to one another in time.

2. Screen the detections to eliminate those that match detections already in

the database. For more information see “Internal Screening of Contain-

ers” on page 74. This function returns the input detection container with

screened detections deleted from it.

Per fo rm Fea tu re Ex t rac t ion [1 .8]

SeisDet produces measurements of signal/background features for each detection

it produces. The process Perform Feature Extraction estimates the waveform and

background attributes in the vicinity of the detections. The process is implemented

by the local Scheme function measure-detection-features. This function is

called by the Scheme language code:

(measure-detection-features wfdata-con initsite det-con)

The function requires three arguments, which are described in Table 31.

TABLE 30: FUNCTIONAL INTERFACE OF SCREEN-DETECTION-CONTAINER

Argument Name Usage Type Description

initsite input GObj initsite object

det-con input and output container detection objects

n/a returned value container detection objects
99

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

100

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This function makes decisions based upon the network type and station type as to

what sort of features can be extracted from the waveforms. First it extracts param-

eters both from the CVAR datastore and from the initsite object. Then it loops over

the detection objects contained in the input detection container. Within this loop

the process performs the following steps:

1. Generate a dbarrival object from the detection object, and write this dbar-

rival object to the arrival database table.

2. If the station is a 3-C seismic sensor, generate a dbapma object from the

detection object, and write this dbapma object to the apma database

table.

3. Estimate detection amplitudes in accordance with the amplitude recipes,

and write this dbamplitude container to the amplitude database table.

4. Generate detection beams in accordance with the detection recipe and

beam ti-recipes.

5. Generate a dbdetection object from the detection object, and write this

dbdetection object to the detection database table.

6. Generate sbsnr dbamplitude objects from the detection object, and write

the sbsnr dbamplitude container to the amplitude database table.

7. If the station consists of a single 3-C seismic sensor, estimate 3-C ampli-

tudes, and write the dbamplitude container to the amp3c database table.

TABLE 31: FUNCTIONAL INTERFACE OF MEASURE-DETECTION-FEATURES

Argument Name Usage Type Description

wfdata-con input container wfdata objects

initsite input GObj initsite object

det-con input container detection objects

n/a returned value container detection objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
In any case where an error is encountered, either in generating information or in

submitting this information to the database, the function prints an error message,

further processing stops, the database is rolled-back, and control passes to the top

of the loop over detections. When all feature extraction processes are successful,

the database is committed, and control is returned to the calling function.

For further information about this function see “Detailed Description of Perform

Feature Extraction [1.8]” on page 132.

Deta i l ed Desc r ip t ion o f Genera te
and Wr i te TM Beams [1 .3]

This process generates and writes TM beams by making a single pass through a

single initialization subprocess followed by a loop over the TM recipes wherein the

TM beams are generated and saved. Figure 13 shows the architecture of the pro-

cess. The subprocess Extract Parameters and Save and Reset stav-len extracts param-

eters and resets the detection recipe parameter det-stav-len for TM beam

processing. Within a loop over TM beam recipes the following subprocesses are

invoked for each TM beam recipe: Generate Beam, Generate STA and LTA (and their

quotient, SNR), and Write TM Beam (to UNIX filesystem). When all suitable beam

recipes have been used and the loop is complete, the process resets the det-stav-

len in the CVAR datastore to the original automatic seismic data processing value it

held prior to being set to a TM value, and control is returned to the calling func-

tion.

The following subprocesses shown in Figure 13 are described in this section:

■ Extract Parameters and Save and Reset stav-len [1.3.1]

■ Generate Beam [1.3.2]

■ Generate Null Beam [1.3.3]

■ Generate STA and LTA [1.3.4]

■ Write TM Beam to UNIX Filesystem [1.3.5]
101

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

 Ju
n

e
 2

0
0

1
 ID

C
-7

.1
.1

 D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 4

:

S
e

is
m

ic
 P

ro
c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

102

ut-
ry/

next
beam-1.3.1 1.3.2

m

initsite object
M wfdata container

waveformsD
FIGURE 13. ARCHITECTURE OF GENERATE AND WRITE TM BEAMS

over beam-
Loop

recipes

tm-outp
directoreset

Return

yes

no

recipe

no
more

Parameters and
Extract

Save and Reset
stav-len

-from-data
make-beam

Beam
Generate

object
beam

NOT null
?

-beam

1.3.3

make-null

Null Beam
Generate

-snr

1.3.4

compute

STA and LTA
Generate

-tm-sta

1.3.5

write

TM Bea
Write

to UNIX
Filesystem

D

stav-len

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Ex t rac t Pa ramete r s and Save and
Rese t s t av - l en [1 .3 .1]

The process Generate and Write TM Beams requires a variety of parameters and

recipes for its activities. The subprocess Extract Parameters and Save and Reset stav-

len acquires the parameters and recipes required to generate and write the TM

beams. The subprocess is implemented by the intrinsic Scheme function let*, the

global Scheme functions getspar, delimited-string->list, and scan-con-

tainer, and the common libgobj Scheme function extract-gobj-attr. It

accesses the parameters in the CVAR datastore and the initsite object, and creates

the local symbols listed in Table 32.

TABLE 32: PARAMETERS ACQUIRED BY EXTRACT PARAMETERS AND
SAVE AND RESET STAV-LEN

Parameter Name Source

tm-beam-list CVAR

beamrec-con initsite object

tm-beamrec-con CVAR and initsite object

det-rec initsite object

tm-rec initsite object

start-time initsite object

end-time initsite object

tm-stav-len initsite object

outdir initsite object

step initsite object

srate initsite object

nullval initsite object

cflength initsite object

save-stavlen initsite object
103

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

104

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Genera te Beam [1 .3 .2]

The process Generate and Write TM Beams generates TM beams formed in accor-

dance with appropriate beam recipes from suitably selected time intervals of wave-

forms. The subprocess Generate Beam generates each TM beam. It is implemented

by the global Scheme function make-beam-from-data. This function is called by

the Scheme language code:

(make-beam-from-data wfdata-con beamrec)

The function requires two arguments, which are described in Table 33.

The function generates a beam from the available waveforms in accordance with

the beam recipe using the DFX/libbeam function make-beam to actually generate

the beam time series. The function make-beam-from-data sets up the argu-

ments required for make-beam via direct access to the CVAR datastore as well as

the contents of the wfdata container. This function returns a beam object.

Genera te Nu l l Beam [1 .3 .3]

The process Generate and Write TM Beams generates TM beams formed in accor-

dance with appropriate beam recipes from suitably selected time intervals of wave-

forms. In some instances a null beam is returned by the subprocess Generate Beam.

When this occurs, subprocess Generate Null Beam is called by the DFX/libbeam

function make-null-beam to generate a beam object of valid structure. This func-

tion is called by the Scheme language code:

(make-null-beam beamrec start-time end-time srate)

TABLE 33: FUNCTIONAL INTERFACE OF MAKE-BEAM-FROM-DATA

Argument Name Usage Type Description

wfdata-con input container wfdata objects

beamrec input GObj beam recipe object

n/a returned value GObj beam object
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The function requires three arguments, which are described in Table 34.

The function generates and returns a beam object that has all of the time-series

data arrays for the beam, the STA, the LTA, the SNR, and so on, with allocated

memory sufficient for the time-duration of the beam that was intended to be gen-

erated in the subprocess Generate Beam. Instead of useful waveform-derived val-

ues in these time series, the time series have floating-valued zeros written in all of

their elements.

Genera te STA and LTA [1 .3 .4]

The process Generate and Write TM Beams generates TM beams formed in accor-

dance with appropriate beam recipes from suitably selected time intervals of wave-

forms. In the context of DFX, a beam object consists of several data arrays in

parallel: the beam time series itself, a time series of STA beam magnitudes (L1

norm) or power levels (L2 norm), a time series of matching LTA beam values, a

time series of their ratio, SNR = STA/LTA, and so on. The subprocess Generate STA

and LTA generates these additional time series from the original beam time series. It

is implemented by the DFX/libdetect function compute-snr. This function is called

by the Scheme language code:

(compute-snr beam det-rec)

TABLE 34: FUNCTIONAL INTERFACE OF MAKE-NULL-BEAM

Argument Name Usage Type Description

beamrec input GObj beam recipe object

start-time input real start-time of the null
beam to be created

end-time input real end-time of the null
beam to be created

srate input real sample rate of the null
beam to be created

n/a returned value GObj beam object
105

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

106

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The function requires two arguments, which are described in Table 35.

The function creates the principal output for the process Generate and Write TM

Beams. It creates the STA, LTA, SNR, and state time series from the given beam

time series in accordance with the parameters in the detection recipe. The returned

value from compute-snr is the input beam object enhanced by having several of

its attributes reference data arrays (of time series with memory allocated) gener-

ated by this function: norm, stav, ltav, snr, and state. Although the STA, LTA, SNR,

and state time series are generated, only the STA time series is saved as the beam

by the TM processing.

Wri te TM Beam to UNIX
F i l e sy s tem [1 .3 .5]

The process Generate and Write TM Beams generates and saves TM beams. This

subprocess saves the generated TM beams in the UNIX filesystem in the appropri-

ate directory in a circular file. It is implemented by the DFX/lbio function write-

tm-sta. This function is called by the Scheme language code:

(write-tm-sta beam outdir start-time end-time step nullval

 cflength)

The function requires seven arguments, which are described in Table 36.

TABLE 35: FUNCTIONAL INTERFACE OF COMPUTE-SNR

Argument Name Usage Type Description

beam input and output GObj beam object

det-rec input GObj seismic detection
processing recipe
object

n/a returned value GObj beam object
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
This function writes each TM beam, which is actually a beam STA time series, to

the UNIX filesystem in the directory indicated by the symbol outdir with a suitable

filename extracted from the beam recipe. The function write-tm-sta returns a

value of nil if an error occurred; otherwise, it returns a double-precision floating

number of value zero or greater.

TABLE 36: FUNCTIONAL INTERFACE OF WRITE-TM-STA

Argument Name Usage Type Description

beam input GObj beam object

outdir input character-string directory name where TM
beams are to be written

start-time input real start-time of this process-
ing interval

end-time input real end-time of the process-
ing interval

step input real inter-sample time incre-
ment (1/sample rate)

nullval input real value to use in the STA
array if there are no data
(in case of a null beam)

cflength input real number of samples to
write to each TM beam
file

n/a returned value real double precision floating
value >= 0 or nil (indi-
cates error)
107

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

108

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Deta i l ed Desc r ip t ion o f Genera te
P re -ex i s t i ng A r r i va l Beams [1 .4]

This process generates and writes beams for pre-existing arrivals within the pro-

cessing time interval in every case where the arrival has no corresponding detec-

tion beam. The process is implemented by the local Scheme function make-pre-

existing-arrival-beams.

Figure 14 shows the architecture of Generate Pre-existing Arrival Beams. The pro-

cess is implemented by a single pass through the initialization subprocesses Extract

Parameters and Query Database (arrivals with beams), followed by a loop over pre-

existing arrivals. Within the loop, the following subprocesses are performed for

each pre-existing arrival: Generate Detection Object, Extract Parameters from Dbar-

rival Object (and Set into Detection Object), and finally, Generate Detection Beam.

When all arrivals have been processed control is returned to the calling function.

The following subprocesses shown in Figure 14 are described in this section:

■ Extract Parameters [1.4.1]

■ Query Database (Arrivals with Beams) [1.4.2]

■ Generate Detection Object [1.4.3]

■ Extract Parameters from Dbarrival Object (and Set into Detection Object)

[1.4.4]

■ Generate Detection Beam [1.4.5]

Ex t rac t Pa ramete r s [1 .4 .1]

To generate beams for pre-existing arrivals that do not already have associated

beams saved, DFX requires a variety of parameter values and symbols to be set.

The subprocess Extract Parameters acquires and binds these parameter values and

symbols. It is implemented by the intrinsic and common libgobj Scheme function

let* and extract-gobj-att, respectively. The subprocess accesses the parame-

ters in the initsite object and creates the local symbols listed in Table 37.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
FIGURE 14. ARCHITECTURE OF GENERATE PRE-EXISTING ARRIVAL BEAMS

TABLE 37: PARAMETERS ACQUIRED BY EXTRACT PARAMETERS

Parameter Name Source

nettype-ss? initsite object

sta initsite object

beamtirec-con initsite object

det-rec initsite object

initsite object
wfdata container

out-arrival-table,
out-wftag-table

over
Loop

arrivals

next
arrival

Return

no
more1.4.1

Parameters
Extract

-with-beams

1.4.2

query-for-dbarrivals

(Arrivals with
Query Database

Beams)

beams

1.4.5

make-det

Detection Beam
Generate

1.4.3

create-gobj

Detection Object
Generate

M

Db wfdisc,
wftag

Db

set-gobj-attr

1.4.4

extract-gobj-attr

Parameters from
Extract

Dbarrival Object
 (and Set into

Detection Object)

waveformsD
109

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

110

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This subprocess is executed only when the station being processed is an array sta-

tion, as indicated in the source code when the symbol nettype-ss? is valued nil

(the station is a single sensor).

Query Database (A r r i va l s w i th
Beams) [1 .4 .2]

To generate pre-existing arrival beams for arrivals that do not already have saved

beams, DFX must identify all of the arrivals for this time interval and station and

must also identify all of the arrivals for this time interval and station that have

saved beams. The subprocess Query Database (Arrivals with Beams) accomplishes

these steps. It is implemented by the local Scheme function query-for-dbar-

rivals-with-beams, which is called by the Scheme language code:

(query-for-dbarrivals-with-beams wfdata-con initsite)

The function requires two arguments, which are described in Table 38.

This function returns a dbarrival container from the out-arrival-table and out-wftag-

table. The returned dbarrival objects are constrained to be in the current processing

time interval (adjusted for lead and lag) for the current station. The out-wftag-table

is queried to find those arrivals for which there are no beams. Thus, the dbarrival

objects returned are those for which beams need to be generated. For general

information on how database queries are implemented see “Querying the Data-

base” on page 41.

TABLE 38: FUNCTIONAL INTERFACE OF QUERY-FOR-DBARRIVALS-WITH-
BEAMS

Argument Name Usage Type Description

wfdata-con input and output container wfdata objects

initsite input GObj initsite object

n/a returned value container dbarrival objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Genera te Detec t ion Ob jec t [1 .4 .3]

The main activity of the process Generate Pre-existing Arrival Beams is to generate

detection beams. The functions that generate detection beams require a detection

object for each detection beam generated. Thus, to use these functions each

arrival must have a corresponding detection object. The subprocess Generate

Detection Object generates a detection object for each arrival to be processed. It is

implemented by the common libgobj Scheme function create-gobj. In addition

to creating the local detection object (symbol det), this function creates an initially

nil-valued symbol wflist that is later used to hold the generated beams.

Ex t rac t Pa ramete r s f rom
Dbar r i va l Ob jec t (and Se t i n to
Detec t ion Ob jec t) [1 .4 .4]

The main activity of the process Generate Pre-existing Arrival Beams is to generate

detection beams. The function for beam generation requires, as one of its input

arguments, a detection object. Therefore, a detection object must be generated

from the available information, which can be found in the dbarrival object. The

subprocess Generate Detection Object creates the required detection object. The

subprocess Extract Parameters from Dbarrival Object (and Set into Detection Object)

fills the essential attributes in the detection object with parameter values it acquires

from the corresponding dbarrival object. It is implemented by the inline generic

Scheme functions let, extract-gob-attr, and set-gobj-attr. The attributes

of the detection object set from the contents in the dbarrival object are listed in

Table 39.

TABLE 39: PARAMETERS SET IN LOCAL DETECTION GOBJ

Detection Parameters Set Dbarrival Parameters Accessed

arid arid

time time

seaz azimuth

slow (sec/km) slow (sec/degree)
111

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

112

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Genera te Detec t ion Beam [1 .4 .5]

The main activity of the process Generate Pre-existing Arrival Beams is to generate

detection beams. The subprocess Generate Detection Beam produces the detection

beam from the waveforms. It is implemented by the local Scheme function make-

det-beams. This function is called by the Scheme language code:

(make-det-beams wfdata-con beamtirec-con det-rec det)

This function requires four arguments, which are described in Table 40.

This function returns a list of the detection beam objects. It performs the following

steps:

1. Extract parameters from the input detection object.

2. Test whether or not the slowness required in the input detection object

satisfies the criterion det-output-beam-max-slow from the input detection

recipe.

3. Where the slowness criterion is satisfied, create a local dbwfdisc container

and a local dbwftag container.

4. Loop over the input beam time-interval recipe container. For each beam

time-interval recipe object, obtain an unique waveform identification

number from Scheme function query-for-last-id for the beam

about to be created.

TABLE 40: FUNCTIONAL INTERFACE OF MAKE-DET-BEAMS

Argument Name Usage Type Description

wfdata-con input container wfdata objects

beamtirec-con input container beam time-interval recipe
objects

det-rec input GObj seismic detection process-
ing recipe object

det input GObj detection object

n/a returned value list beam objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
5. Set a local beam recipe container to the detection beam recipes listed in

the time-interval recipes via the global Scheme function get-beamrec-

for-tirec-from-beamtirec-con.

6. Create a detection beam wfdisc container via the DFX/libio function

create-db-detection-beam.

7. Insert this beam container into the local dbwfdisc container via the global

Scheme function insert-container-sub.

8. When the loop over all available beam time-interval recipe objects is com-

pleted, submit the collection of detection beam dbwfdisc and dbwftag

objects to the database via the local Scheme function submit-dbwf-

disc-dbwftag. In this last step, the function submits both the dbwfdisc

container and the dbwftag container to the appropriate database tables

specified by the parameters out-wfdisc-table and out-wftag-table. For

more information on submitting results to the database see “Writing to

the Database” on page 44.

Deta i l ed Desc r ip t ion o f Pe r fo rm
Detec t ion P rocess ing [1 .5]

This process identifies detections within the processing time interval, the first step

in creating the final detection set. It is implemented by a call to the local Scheme

function make-detections.

Figure 15 shows the architecture of Perform Detection Processing. The process is

implemented by a single pass through the initialization subprocess Extract Parame-

ters, followed by a loop over standard beam and detection beam recipes. Within

the loop, for each detection beam recipe, the process extracts the beam name,

generates the detection beam, generates the STA and LTA (and SNR and state)

time series for the beam, and generates triggers. When all detection beam recipes

have been processed and the loop is completed, the subprocess evaluates the trig-

gers and generates the detections. A detection container is returned to the calling

function.
113

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

114

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 15. ARCHITECTURE OF PERFORM DETECTION PROCESSING

The following subprocesses shown in Figure 15 are described in this section:

■ Extract Parameters [1.5.1]

■ Extract Beam-Name [1.5.2]

■ Generate Detection Beam [1.5.3]

■ Generate STA and LTA (and SNR and state) [1.5.4]

■ Generate Triggers [1.5.5]

■ Evaluate Triggers and Generate Detections [1.5.6]

Ex t rac t Pa ramete r s [1 .5 .1]

The process Perform Detection Processing requires a variety of parameter values

and symbols to be set for it to operate. The subprocess Extract Parameters acquires

and binds these parameter values and symbols. It is implemented by the intrinsic

no

next

over
Loop

beam-

more

beam-

recipes

initsite object
wfdata container

Return

recipe

-from-data

1.5.3

make-beam

Detection
Generate

Beam

1.5.2

Extract

1.5.4

compute-snr

1.5.5

find-triggers

Triggers
Generate

-detections

1.5.6

find

and Generate
Evaluate Triggers

Detections

1.5.1

Parameters
Extract

M

Beam-Name

STA and LTA
Generate

(and snr and
state)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Scheme function let and common libgobj extract-gobj-att, respectively. It

accesses the attributes in the initsite object and creates the local symbols listed in

Table 41. This function also creates an initially empty trigger container (symbol trig-

con).

Ex t rac t Beam-Name [1 .5 .2]

The process Perform Detection Processing generates detection beams and evaluates

these beams to find detections. The detection beam must be named. The subpro-

cess Extract Beam-Name acquires a suitable detection beam name from the beam-

name attribute of the appropriate beam recipe object. It also creates an error mes-

sage for use in case subsequent functions fail. This subprocess is implemented by

the intrinsic and common libgobj Scheme functions let* and extract-gobj-

attr, respectively.

Following this function, an initially nil local symbol beam is created, and an explicit

Scheme environment “garbage collection” is performed by the intrinsic Scheme

function gc.

TABLE 41: PARAMETERS ACQUIRED BY EXTRACT PARAMETERS

Parameter Name Source

stdbeam-con initsite object

beamrec-con initsite object

det-rec initsite object

start-time initsite object

end-time initsite object
115

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

116

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Genera te Detec t ion Beam [1 .5 .3]

The process Perform Detection Processing generates beams and evaluates the

detection beams among them to find detections. The subprocess Generate Detec-

tion Beam creates a beam from the waveforms in accordance with the current

beam recipe object. It is implemented by the global Scheme function make-beam-

from-data. This function is called by the Scheme language code:

(make-beam-from-data wfdata-con beamrec)

The function requires two arguments, which are described in Table 42.

The function make-beam-from-data provides a “wrapper” to the DFX/libbeam

function make-beam. The function make-beam accesses and processes the wave-

forms to form the beam. It returns a beam object. If the beam recipe object defines

a standard beam this beam is saved in a standard beams container and is returned

from the process Perform Detection Processing as a side-effect via the initsite object.

If the beam recipe requires a detection beam, then this beam is subject to further

evaluation for generating detections.

Genera te STA and LTA (and SNR
and s ta te) [1 .5 .4]

The process Perform Detection Processing generates and evaluates detection beams

to find detections. The evaluation is based upon a time series of detection statistic

values generated from the time series of each detection beam. The detection sta-

tistic currently in use is an L1-norm STA of beam time-series sample magnitudes

compared with the LTA of beam time-series sample magnitudes. The magnitudes

TABLE 42: FUNCTIONAL INTERFACE OF MAKE-BEAM-FROM-DATA

Argument Name Usage Type Description

wfdata-con input container wfdata objects

beamrec input GObj beam recipe object

n/a returned value GObj beam object
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
are compared by forming the time series of the sample-by-sample ratio of the time

series of STA to the time series of LTA. This ratio time series is the SNR. In the pres-

ence of ambient noise alone, free of seismic events, the SNR should be approxi-

mately unity. When a transient seismic signal arrives the ratio should become

significantly larger than unity.

The time series of beamformed data that are used to generate the STA and LTA

time series are computed from a sum over time-aligned waveform samples (or a

transformation of waveforms) from several sensors of a sensor array. In general,

each sensor's waveforms have a pattern of defects that may be independent of the

other sensors. Because waveform samples that have been deemed defective (via

the quality-control processing) are not summed into the beam time series, the

number of sensors contributing to the sum may vary. The "raw" beam generated

in this fashion is not useful unless a correction is made for the number of sensors

contributing to each time-sample. This correction is accomplished by a time series

in the beam object called the "norm" array. It is a time series of the count of sen-

sors corresponding to the beamformed sum time series. For samples where the

norm is less than a threshold value, the given sample is ignored in subsequent pro-

cessing such as in the calculation of the STA and LTA time series. The threshold for

using a beam sample is the product of the detection recipe parameter det-min-sta-

fraction and the number of elements in the beam sum (sensors if 1-C stations or, in

the case of 3-C stations, channels adjusted for beam rotation, if any). In no case is

the product allowed to drop below unity. To facilitate application of the norm time-

series and the threshold applied to it, another time-series array, the state, is created

and stored in parallel with the beam. The state array is unity valued for all time

samples where the beam's norm is above threshold, and it is zero-valued else-

where. The state array is analogous to that of the mask time-series array for an

individual channel of waveforms. Thus, in the actual generation of the STA and

LTA time series, the value of the state array is used in conjunction with each corre-

sponding beam datum. This ensures that the STA, LTA, and SNR are not used to

generate faulty triggers and ultimately unreliable detections.

The subprocess Generate STA and LTA (and SNR and state) creates a time series of

STA values, LTA values, SNR values, and state values. These four time series are

used for detection processing. The STA, LTA, SNR, and state are formulated in
117

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

118

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
accordance with the parameter value specified in the detection recipe. This subpro-

cess is implemented by the DFX/libdetect function compute-snr. This function is

called by the Scheme language call:

(compute-snr beam det-rec)

The function requires two arguments, which are described in Table 43.

The returned value from compute-snr is the input beam object enhanced by hav-

ing several of its attributes set: stav, ltav, snr, and state. If the input beam object is a

detection-beam object, then the enhanced version of it is subject to further pro-

cessing to develop detections. If the input beam object is a standard-beam object,

then the enhanced version of it is inserted into the standard-beam container.

Because the standard-beam container is an attribute in the initsite object, its infor-

mation is returned to the calling program as a side-effect.

Genera te Tr i gge r s [1 .5 .5]

The process Perform Detection Processing generates and evaluates detection beams

to find detections. The evaluation is based upon a time series of detection statistic

values (the SNR). The subprocess Generate Triggers evaluates the SNR time series in

comparison to a fixed threshold (from the beam recipe object used to specify the

detection beam). The SNR time series is evaluated in a loop running over its sam-

ples. Wherever the SNR value exceeds the threshold and also satisfies other detec-

TABLE 43: FUNCTIONAL INTERFACE OF COMPUTE-SNR

Argument Name Usage Type Description

beam input and output GObj beam object

det-rec input GObj seismic detection
processing recipe
object

n/a returned value GObj beam object
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
tion criteria, this subprocess generates a trigger object. The trigger objects are saved

in a trigger container. This function is implemented by the DFX/libdetect function

find-triggers. This function is called by the Scheme language code:

(find-triggers beam start-time end-time trig-con det-rec)

The function requires five arguments, which are described in Table 44.

The returned value from find-triggers is the input trigger container or nil if

an error is encountered.

Eva lua te Tr i gge r s and Genera te
Detec t ions [1 .5 .6]

The process Perform Detection Processing generates and evaluates detection beams

to find detections. The subprocess Evaluate Triggers and Output Detections finds

detections by evaluating the triggers previously generated. This subprocess is

implemented by the DFX/libdetect function find-detections. This function is

called by the Scheme language code:

(find-detections trig-con det-rec)

TABLE 44: FUNCTIONAL INTERFACE OF FIND-TRIGGERS

Argument Name Usage Type Description

beam input GObj beam object

start-time input real start-time for trigger pro-
cessing

end-time input real end-time for trigger pro-
cessing

trig-con output container trigger objects

det-rec input GObj seismic detection process-
ing recipe object

n/a returned value container trigger objects,
nil (indicates error)
119

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

120

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The function requires two arguments, which are described in Table 45.

The function find-detections evaluates each of the trigger objects in the trigger

container in accordance with the detection algorithm and the parameter values

found in the detection recipe. Where possible it generates a detection object and

saves the object in a detection container. The returned value from find-detec-

tions is a detection container, which is empty if no trigger can satisfy the criteria

for detection or nil if an error is encountered.

TABLE 45: FUNCTIONAL INTERFACE OF FIND-DETECTIONS

Argument Name Usage Type Description

trig-con input container trigger objects

det-rec input GObj seismic detection pro-
cessing recipe object

n/a returned value container detection objects

nil (indicates error)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The following algorithm is used to declare detections:

1. Sort the triggers in the input trigger container by time from earliest to lat-

est.

2. Determine the number of samples from the onset of the first trigger to

the shut-off of the last trigger. Allocate a detection state vector of this

length.

3. Compute the detection state vector as a sum over all the triggers.

4. Determine the interval length for declaring new detections.

5. Find detection triggers. Evaluate each point in the detection state vector.

A detecting state occurs when state value exceeds min_triggered_beams.

Save the first trigger beam recipe. If the state value is in a state of detec-

tion and the time since the start of this detecting interval is less than

min_det_interval, increment the interval and continue. If the state value

has fallen below min_triggered_beams, a detecting interval is completed.

Turn off detecting state, and look for the best SNR trigger within this

interval. Track the current trigger for the next time. Add the best SNR

trigger to the dynamic array. If a detecting interval is not completed, con-

tinue. If it is not in a detecting state, check if the next sample is in a

detection state.

6. If all samples of the state vector have been evaluated and the prevailing

state is “detecting,” complete the last detection object.

7. Set the array of detection structures for output.

See [IDC5.2.1] for more information on making seismic detections.
121

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

122

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Deta i l ed Desc r ip t ion o f Rev i se
Ex t rac ted Es t imates [1 .6]

This process provides initial estimates of the onset time, amplitude(s), period, azi-

muth and slowness, and where applicable, polarization for those detections

present at the given station for the given processing time interval. Where any of

these parameters cannot be estimated, the detection is deleted. Thus, on comple-

tion, this process returns a revised detection container, that is, detection objects

with feature measurements.

Figure 16 shows the architecture of Revise Extracted Estimates. The process is

implemented by a single pass through the initialization subprocess Extract Parame-

ters, followed by a loop over detection objects, and concluded by removing defec-

tive detection objects. Figure 16 uses a special symbology in which control passes

from many points to a process labeled “K” where the current detection object is

inserted into a detection container that holds those detection objects that are

defective or incomplete. Once the “bad” detection object is inserted in this con-

tainer, control returns to the top of the loop over detections. For each detection

object within the main loop over detection objects the process performs the follow-

ing steps:

1. Revise the onset time estimate

2. Estimate the amplitude.

3. Where the station being processed is a sensor array station, generate the

f-k spectrum.

4. Where the station being processed is a sensor array station of long base-

line dimensions, generate the f-k spectrum via beam.

5. Where the station being processed in a 3-C single-sensor station, esti-

mate polarization.

When all available detection objects have been processed within the main loop, a

secondary loop is run over defective detection objects. Within this secondary loop

each defective detection object is removed from the input detection container.

Finally, the revised detection input container is returned to the calling function.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

123
ID

C
-7

.1
.1

 Ju
n

e
 2

0
0

1

D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 4

:

S
e

is
m

ic
 P

ro
c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

NOT null
results

?

NOT null
results

?

net-type=
“array” OR “larray”

?

type = “3c”
sta-

?

•

K

yes

yes

yes

yes

m

no

no

no

K
no
FIGURE 16. ARCHITECTURE OF REVISE EXTRACTED ESTIMATES

Return

initsite object
wfdata container
detection container

container
detection

screen
matches

bad-detection
match

object with detection
object

?

over
Loop

bad detections

•

1.6.1

Parameters
Extract

over
Loop

detections

-det-onset

1.6.2

revise

Revised
Estimate

Onset Time

time from
extract

detection
object

NOT null
results

?

-best-beam

1.6.3

computer-det-amp

Amplitude
Estimate

(Best Beam)

-polarization

1.6.6

measure-detection

Polarization
Estimate

-fk-beam
compute-det-amp

detection
Estimate

amplitude

NOT null
results

?

NOT null
results

?

K

K

K

K

no

yes

yes

yes

yes

next

ore

next
bad-detection

no

no
more

detection no

no

no

no

yes

M

NOT null
f-k object

?
“array”

net-type=

?

yesGenerate
F-k Spectrum

make-fk

1.6.4

-beamform-fk
make-

Generate
F-k Spectrum

1.6.5

via Beam

-det-onset
revise

Estimate
revised

onset time

•

•

no

bad-detection
container

K

M

•

124

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The following subprocesses shown in Figure 16 are described in this section:

■ Extract Parameters [1.6.1]

■ Estimate Revised Onset Time [1.6.2]

■ Estimate Amplitude (Best Beam) [1.6.3]

■ Generate F-k Spectrum [1.6.4]

■ Generate F-k Spectrum via Beam [1.6.5]

■ Estimate Polarization [1.6.6]

Ex t rac t Pa ramete r s [1 .6 .1]

The process Revise Extracted Estimates requires a variety of parameter values and

symbols to be set for it to operate. The subprocess Extract Parameters acquires and

binds these parameter values and symbols. It is implemented by the intrinsic and

common libgobj Scheme functions let* and extract-gobj-attr, respectively.

It accesses the attributes in the initsite object and creates the local symbols listed in

Table 46.

TABLE 46: PARAMETERS ACQUIRED BY EXTRACT PARAMETERS

Parameter Name Source

det-rec initsite object

onset-rec initsite object

SNRfilt-rec initsite object

amprec-con initsite object

fk-rec initsite object

polar-rec initsite object

use-polar-azi-slow? initsite object

nettype initsite object

statype initsite object

wavetype initsite object
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
In addition to creating these local symbols, this function creates an initially empty

detection container (symbol bad-det-con) for detections that are found to be defec-

tive.

Es t imate Rev i sed Onse t T ime [1 .6 .2]

The process Revise Extracted Estimates revises preliminary memory-resident values

for some primary detection attributes and provides initial values for some primary

detection attributes for the detections generated in SeisDet. The subprocess Esti-

mate Revised Onset Time specifically revises the onset time estimated for each

detected signal. It operates on one detection at a time. It is implemented by the

local Scheme function revise-det-onset. This function is called by the Scheme

language code:

(revise-det-onset wfdata-con onset-rec SNRfilt-rec

 beam-type det)

The function requires five arguments, which are described in Table 47.

TABLE 47: FUNCTIONAL INTERFACE OF REVISE-DET-ONSET

Argument Name Usage Type Description

wfdata-con input container wfdata objects

onset-rec input GObj onset-recipe object

SNRfilt-rec input GObj SNRfilt-recipe object

beam-type input character-string type of beam to pro-
cess: ÒfkÓ or
ÒbestÓ

det input and output container detection objects

n/a returned value GObj detection object

nil (indicates error)
125

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

126

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This function is called with the argument beam-type set as the character-string

ÒbestÓ. This function revises the onset time estimate using the appropriate algo-

rithm for the input beam type, modifies the input detection object, and returns this

object. On error, nil is returned. If the ons-SNR-filter parameter of the onset-rec-

ipe object is set appropriately, this algorithm searches over the SNRfilter bank to

identify and use in subsequent processing within this function the filter that yields

the beam with the best snr.

The function revise-det-onset performs the following steps:

1. Extract parameters from the onset-recipe object and the input detection

object.

2. Copy the beam-recipe object best-beam-rec from the input detection

object.

3. In the case where the input beam type is fk, set the azi and slow

attributes of the beam recipe to the default value (-1).

4. Where the ons-SNR-filter parameter of the onset recipe object is set,

search over the SNRfilter bank to identify the beam with the best snr.

5. Where the onset revision method specifies an auto-regressive Akaike

Information Criterion (ARAIC) approach, generate and return an onset-

beam object applying the ARAIC method. Also reset the time attribute in

the detection object to the estimate produced by this ARAIC algorithm.

6. Where the onset revision method specifies a non-AIC approach, gener-

ate and return an onset-beam object applying the traditional AR method.

Also, reset the time attribute in the detection object to the estimate pro-

duced by this traditional AR algorithm.

An error in any of steps 4–6 causes an error message to be printed, and the process

returns a value of nil.

The onset revision functions referenced in revise-det-onset are actually imple-

mented by the DFX/libonset functions revise-onset and revise-farm-

onset. Function revise-det-onset returns a detection object whose time

attribute has been revised. See [IDC5.2.1] for more information on auto-regressive

approaches to refining onset time estimates.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Es t imate Ampl i tude (Bes t Beam) [1 .6 .3]

The process Revise Extracted Estimates revises preliminary memory-resident values

for some primary detection attributes and provides initial values for the remaining

primary detection attributes for the detections generated in SeisDet. The subpro-

cess Estimate Amplitude (Best Beam) specifically estimates the amplitude for a given

detection object using the available waveforms, detection recipe, amplitude recipe

container, and detection object from the input. It operates on one detection at a

time. It is implemented by the global Scheme function compute-det-amp-best-

beam. This function is called by the Scheme language code:

(compute-det-amp-best-beam wfdata-con amprec-con

 det-rec det)

The function requires four arguments, which are described in Table 48.

The amplitude-estimation recipe object specified in the amplitude-estimation recipe

container (det-amprec-for-arrival) is used in conjunction with the best beam

to generate the amplitude estimate.

TABLE 48: FUNCTIONAL INTERFACE OF COMPUTE-DET-AMP-BEST-BEAM

Argument Name Usage Type Description

wfdata-con input container wfdata objects

amprec-con input GObj amplitude estima-
tion recipe object

det-rec input object GObj seismic detection
processing recipe
object

det input and output GObj detection object

n/a returned value GObj detection object

nil (indicates
error)
127

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

128

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Function compute-det-amp-best-beam is implemented in global Scheme code,

which provides a “wrapper” to the DFX/libamp function measure-detection-

amplitude. This function returns an amplitude object and modifies the detection

object input to it. The input detection object has its amp and per attributes set in

accordance with the corresponding parameters of the returned amplitude object.

The returned value from compute-det-amp-best-beam is this detection object

in which the amp and per attributes have been set.

Genera te F -k Spec t rum [1 .6 .4]

The process Revise Extracted Estimates revises preliminary memory-resident values

for some primary detection attributes and provides initial values for the remaining

primary detection attributes for the detections generated in SeisDet. The subpro-

cess Generate F-k Spectrum specifically computes the frequency-wavenumber spec-

trum for the available waveforms in accordance with the f-k recipe object in the

neighborhood of the detected signal. For a given detection, this spectrum provides

estimates of the azimuth and magnitude slowness and estimates of the errors in

these two parameters. It operates on one detection at a time. It is implemented by

the Scheme function make-fk. This function is called by the Scheme language

code:

(make-fk wfdata-con det fk-rec)

The function requires three arguments, which are described in Table 49.

TABLE 49: FUNCTIONAL INTERFACE OF MAKE-FK

Argument Name Usage Type Description

wfdata-con input container wfdata objects

det input and output GObj detection object

fk-rec input GObj f-k recipe object

n/a returned value GObj f-k spectrum object

nil (indicates error)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The time point at which the f-k spectrum is generated is determined by the time

parameter in the input detection object. The processing time window is set in

accordance with the f-k recipe’s lead and lag parameters. The waveforms are pre-

filtered, and the frequency range over which the f-k spectrum is averaged is set by

the flo and fhi, and the fklof and fkhif parameters of the f-k recipe object, respec-

tively. The slowness extent and resolution of the f-k spectrum calculation are like-

wise set in accordance with the f-k recipe object’s maxslow and nslow parameters.

The f-k spectrum is scaled to the F-statistic, and the point of maximum F-statistic

in vector slowness space is transformed to the back-azimuth and magnitude slow-

ness estimates for the detection. Estimates of the measurement errors, delaz and

delslo, in these parameters are also produced. The estimates are set into both the

returned f-k object and the appropriate parameters of the input detection object.

See [IDC5.2.1] for more information on frequency-wavenumber spectrum genera-

tion.

This function is implemented by the DFX/libfk function make-fk. The returned

value from make-fk is an f-k (spectrum) object, or nil if an error occurred.

Genera te F -k Spec t rum v i a Beam [1 .6 .5]

The process Revise Extracted Estimates revises preliminary memory-resident values

for some primary detection attributes and provides initial values for the remaining

primary detection attributes for the detections generated in SeisDet. The subpro-

cess Generate F-k Spectrum via Beam specifically computes the frequency-wave-

number spectrum for the available waveforms in accordance with the f-k recipe

object in cases where the spatial extent of the sensor array is too large for the nor-

mal subprocess Generate F-k Spectrum. For a given detection, this spectrum pro-

vides estimates of the azimuth and magnitude slowness and estimates of the errors

in these two parameters. It operates on one detection at a time. It is implemented

by the Scheme function make-beamform-fk. This function is called by the

Scheme language code:

(make-beamform-fk wfdata-con det fk-rec)

The function requires the same arguments described in Table 49 on page 128.
129

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

130

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The function make-beamform-fk computes the frequency-wavenumber spec-

trum using time-domain beamforming rather than the frequency-domain

approach applied in the normal algorithm. This is essential where long baseline

sensor arrays are in use; inter-sensor delays can easily exceed the total time dura-

tion of the f-k spectrum processing window (the sum of the lead and lag attributes

in the f-k spectrum recipe). Pre-calculated time delays are used.

The time-point, frequency limits for pre-filtering the data and for the spectrum cal-

culation are set in the same way as described in the preceding subprocess Generate

F-k Spectrum. The slowness extent and resolution also are set in the same way as

previously described. As with the prior subprocess, this f-k spectrum is also scaled

to the F-statistic, and the point of maximum F-statistic in vector-slowness space is

transformed to the back-azimuth and magnitude slowness estimates for the detec-

tion. Estimates of the measurement errors, delaz and delslo, in these parameters

are also produced. The estimates are set in the produced f-k object and in the

appropriate attributes of the input detection object.

This function is implemented by the DFX/libfk function make-beamform-fk. The

returned value from make-beamform-fk is an f-k (spectrum) object, or nil if an

error has occurred.

Following the generation of the f-k spectrum by either of the two foregoing sub-

processes, the subprocesses Estimate Revised Onset Time and Estimate Detection

Amplitude are invoked in order to improve the onset time estimate and to extract

better amplitude and period information now that azimuth and magnitude slow-

ness estimates are available from the f-k spectrum for this detection. These subpro-

cesses call the functions revise-det-onset and compute-det-amp-fk-beam,

respectively. The revise-det-onset function operates exactly as described in

“Estimate Revised Onset Time [1.6.2]” on page 125. The compute-det-amp-

fk-beam function operates the same as the compute-det-amp-best-beam

function described in “Estimate Amplitude (Best Beam) [1.6.3]” on page 127 with

the following exception: in compute-det-amp-best-beam the beam recipe azi-

muth and magnitude slowness values govern the computations performed by
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
measure-detection-amplitude, whereas in compute-det-amp-fk-beam

the detection object azimuth and magnitude slowness values govern the computa-

tions performed by measure-detection-amplitude.

Es t imate Po la r i za t ion [1 .6 .6]

The process Revise Extracted Estimates revises preliminary memory-resident values

for some primary detection attributes and provides initial values for the remaining

primary detection attributes for the detections generated in SeisDet. Where the

waveforms were recorded at stations having 3-C seismic sensors, the subprocess

Estimate Polarization computes a variety of polarization parameters from the avail-

able waveforms in accordance with the polarization recipe, as provided by the

detection object. This subprocess operates on one detection at a time. It is imple-

mented by the DFX/libthreec function measure-detection-polarization,

which is called by the Scheme language code:

(measure-detection-polarization wfdata-con polar-rec det)

The function requires three arguments, which are described in Table 50.

The returned value from measure-detection-polarization is a polar object,

which is nil if an error occurred.

TABLE 50: FUNCTIONAL INTERFACE OF MEASURE-DETECTION-
POLARIZATION

Argument Name Usage Type Description

wfdata-con input container wfdata objects

polar-rec input GObj polarization estima-
tion recipe object

det input and output GObj detection object

n/a returned value GObj polar object

nil (indicates error)
131

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

132

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
In addition, if the polarization recipe parameter use_azi_slow is set to unity, then

the azimuth and magnitude slowness estimates and their estimated errors (delaz

and delslo) from the polarization processing are set into the appropriate parame-

ters of the input detection object where they are returned as a side-effect. See

[IDC5.2.1] for more information on polarization estimation.

Deta i l ed Desc r ip t ion o f Pe r fo rm
Fea tu re Ex t rac t ion [1 .8]

This process is implemented by a call to the local Scheme function measure-

detection-features. This function performs the processing that provides esti-

mates of the amplitude, sbsnr amplitude, and periods for detections identified by

the process Perform Detection. All generated information is written to the appropri-

ate database tables: arrival, detection, amplitude, amp3c, and apma. The types of fea-

tures estimated depend on the nature of the station.

Figure 17 shows the architecture of Perform Feature Extraction. The process first

extracts parameters, then it performs a loop over the detection objects. Within the

loop over detection objects, the following steps are applied to each detection

object:

1. Create and write dbarrival object.

2. Where the station has 3-C sensors, generate and write the dbapma

object.

3. Estimate and write the detection amplitudes.

4. Generate and write detection beams.

5. Create and write the dbdetection object.

6. Estimate and write sbsnr amplitudes.

7. Where the station is a single 3-C sensor, estimate and write 3-C ampli-

tudes.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

133
ID

C
-7

.1
.1

 Ju
n

e
 2

0
0

1

D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 4

:

S
e

is
m

ic
 P

ro
c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

StaType =
“3c”

?

-from-detection

1.8.3

create-dbapma

Write Dbapma
Generate and

Object

-amplitudes

1.8.4

make-det

Write Detection
Estimate and

Amplitude

•

yes

no
FIGURE 17. ARCHITECTURE OF PERFORM FEATURE EXTRACTION

initsite object
wfdata container
detection container

1.8.1

Parameters
Extract

Loop over
detections

arrival
Create

object

-object-from

1.8.2

create-dbarrival

Dbarrival
Create and Write

Object

-detection

arrival

NetType = “ss”
AND StaType = “3c”

?

-from-detection

1.8.8

create-dbamp3c

3-C
Create and Write

Amplitudes

-from-detection

1.8.6

create-dbdetection

Dbdetection
Create and Write

Object

-det-beams

1.8.5

make

Write Detection
Generate and

Beams

apmaamp3c

Return

detection

amplitude

•

yes

no
more

M

Db

Db Db Db

Db

-dbamplitude

1.8.7

create-sbsnr

Write sbsnr
Estimate and

Amplitude

-from-det

Db wfdisc,
wftag

no

amplitudeDb

next
detection

waveformsD

134

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
When all detection objects have been processed within the loop and it is com-

pleted, the database inserts are committed. If an error occurs in the dbarrival or

dbapma steps (1 or 2), the current database transactions are rolled-back, and the

next detection is processed. If an error occurs in a subsequent step (3–7), a warn-

ing message is printed, and processing continues to the next step for the current

detection object.

The following subprocesses shown in Figure 17 are described in this section:

■ Extract Parameters [1.8.1]

■ Create and Write Dbarrival Object [1.8.2]

■ Generate and Write Dbapma Object [1.8.3]

■ Estimate and Write Detection Amplitude [1.8.4]

■ Generate and Write Detection Beams [1.8.5]

■ Create and Write Dbdetection Object [1.8.6]

■ Estimate and Write sbsnr Amplitude [1.8.7]

■ Create and Write 3-C Amplitudes [1.8.8]

Ex t rac t Pa ramete r s [1 .8 .1]

The process Perform Feature Extraction requires a variety of parameter values and

symbols to be set for it to operate. The subprocess Extract Parameters acquires and

binds these parameter values and symbols. It is implemented by the intrinsic, glo-

bal, and common libgobj Scheme functions let*, mstspar, and extract-gobj-

attr, respectively. It accesses the CVAR datastore directly as well as parameters in

the initsite object and creates the local symbols listed in Table 51.

TABLE 51: PARAMETERS ACQUIRED BY EXTRACT
PARAMETERS

Parameter Name Source

arrival-table CVAR

detection-table CVAR

apma-table CVAR
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
This function also creates two formatted messages: an error message format and a

warning message format for use as required.

Crea te and Wr i te Dbar r i va l
Ob jec t [1 .8 .2]

The process Perform Feature Extraction requires an arrival object to be written to

the database. The subprocess Create and Write Dbarrival Object creates a dbarrival

object from the attributes of an existing detection object, and it submits this to the

arrival database table. It is implemented by the DFX/libdb function create-dbar-

rival-from-detection and the global Scheme function submit-object-db.

The first function is called by the Scheme language code:

(create-dbarrival-from-detection det)

amplitude-table CVAR

amp3c-table CVAR

det-rec initsite object

amprec-con initsite object

beamtirec-rec initsite object

polar-rec initsite object

amp3crec-con initsite object

stdbeam-con initsite object

NetType initsite object

statype initsite object

wavetype initsite object

use-polar-azi-slow? polar-rec object
(see local symbol above)

TABLE 51: PARAMETERS ACQUIRED BY EXTRACT
PARAMETERS (CONTINUED)

Parameter Name Source
135

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

136

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The function requires one argument, which is described in Table 52.

This function copies matching attributes from the input detection object into the

dbarrival object to the extent possible, and it sets others (chan, auth, jdate, and

lddate). The bulk of the parameter attribute copying is accomplished by the DFX/

libutil function gobj_to_gobj_copy. Both the estimated magnitude slowness

(slow) and its estimated error (delslo) are converted from seconds per kilometer to

seconds per degree. This function returns a dbarrival object, or nil, if an error was

encountered. On error, an error message is printed, and waveform feature extrac-

tion and processing continues with the next detection.

Following the generation of the dbarrival object, it is submitted to the database for

insertion into the arrival table. This function is implemented by the global Scheme

function submit-object-db, which is called by the Scheme language code:

(submit-object-db dbarrival arrival-table)

The function requires two arguments, which are described in Table 53.

TABLE 52: FUNCTIONAL INTERFACE OF CREATE-DBARRIVAL-FROM-
DETECTION

Argument Name Usage Type Description

det input GObj detection object

n/a returned value container dbarrival objects

nil (indicates error)

TABLE 53: FUNCTIONAL INTERFACE OF SUBMIT-OBJECT-DB (ARRIVAL)

Argument Name Usage Type Description

dbarrival input GObj dbarrival object

arrival-table input character-string arrival database table

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The function submit-object-db inserts the dbarrival object into a suitable con-

tainer (a container of the given object class) and submits the container to the data-

base by the global Scheme function submit-container-db for insertion into the

arrival table. On error, an error message is printed, and a value of nil is returned

to the calling function. For more information on submitting results to the database

see “Writing to the Database” on page 44.

Genera te and Wr i te Dbapma
Ob jec t [1 .8 .3]

The process Perform Feature Extraction requires a particle motion analysis (apma)

object to be written to the database. The subprocess Create and Write Dbapma

Object creates a dbapma object from the input detection object, and it submits this

to the apma database table. It is implemented by the DFX/libdb function create-

dbapma-from-detection and the global Scheme function submit-object-

db. The first function is called by the Scheme language code:

(create-dbapma-from-detection det)

The function requires one argument, which is described in Table 54.

This function copies matching attributes from the input detection object into the

dbapma object to the extent possible, and it sets others (auth and lddate). The bulk

of the parameter attribute copying is accomplished by the DFX/libutil function

gobj_to_gobj_copy. This function returns a dbapma object, or nil if an error is

encountered. See [IDC5.2.1] for more information on seismic particle motion anal-

ysis.

TABLE 54: FUNCTIONAL INTERFACE OF CREATE-DBAPMA-FROM-DETECTION

Argument Name Usage Type Description

det input GObj detection object

n/a returned value GObj dbapma object

nil (indicates error)
137

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

138

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Following the generation of the dbapma object, it is submitted to the database for

insertion into the apma table. This function is implemented by the global Scheme

function submit-object-db, which is called by the Scheme language code:

(submit-object-db dbapma apma-table)

The function requires two arguments, which are described in Table 55.

The function submit-object-db inserts the dbapma object into a suitable con-

tainer (a container of the given object class) and submits the container to the data-

base via the global Scheme function submit-container-db for insertion into

the apma table. On error, an error message is printed, and a value of nil is

returned to the calling function. For more information on submitting results to the

database see “Writing to the Database” on page 44.

Es t imate and Wr i te Detec t ion
Ampl i tude [1 .8 .4]

The process Perform Feature Extraction requires detection amplitudes to be esti-

mated and written to the database. The subprocess Estimate and Write Detection

Amplitude performs these measurements, and it submits the results to the ampli-

tude database table. It is implemented by the DFX/libamp function make-det-

amplitudes and the global Scheme function submit-container-db. The first

function is called by the Scheme language code:

(make-det-amplitudes wfdata-con amprec-con det)

The function requires three arguments, which are described in Table 56.

TABLE 55: FUNCTIONAL INTERFACE OF SUBMIT-OBJECT-DB (APMA)

Argument Name Usage Type Description

dbapma input GObj dbapma object

apma-table input character-string apma database table

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
This function estimates the detection amplitudes of the input detection object for

each of the detection amplitude recipe objects in the input container using the

waveforms. It returns a dbamplitude container, or nil if an error is encountered.

As a side-effect the amp and per parameters of the input detection object are set

with the estimated amplitude and period. On error, a warning message is printed,

further processing is attempted, and control is passed to the next subprocess

within the process Perform Feature Extraction. See [IDC5.2.1] for more information

on seismic amplitude estimation.

Following the generation of the dbamplitude container, it is submitted to the data-

base for insertion into the amplitude table. This function is implemented by the glo-

bal Scheme function submit-container-db, which is called by the Scheme

language code:

(submit-container-db dbamplitude-con amplitude-table)

The function requires two arguments, which are described in Table 57.

TABLE 56: FUNCTIONAL INTERFACE OF MAKE-DET-AMPLITUDES

Argument Name Usage Type Description

wfdata-con input container wfdata objects

amprec-con input container amplitude estimation pro-
cessing recipe objects

det input and output GObj detection object

n/a returned value container dbamplitude objects
139

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

140

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The function submit-container-db submits the dbamplitude container to the

database for insertion into the amplitude table. On error, an error message is

printed, and control is passed to the next subprocess within the process Perform

Feature Extraction. For more information on submitting results to the database see

“Writing to the Database” on page 44.

Genera te and Wr i te Detec t ion
Beams [1 .8 .5]

The process Perform Feature Extraction requires detection beams to be generated

and written to the UNIX filesystem and the database. The subprocess Generate and

Write Detection Beams generates the detection beams, writes the time-series beam

data samples to the UNIX filesystem, and submits the corresponding beam dbwf-

disc record to the wfdisc database table and (if parameter data-output-wftag is set

to non-zero) to the wftag database table. It is implemented by the local Scheme

functions make-det-beams and submit-dbwfdisc-dbwftag. The first function

is called by the Scheme language code:

(make-det-beams wfdata-con beamtirec-con det-rec det)

This function requires four arguments, which are described in Table 58.

TABLE 57: FUNCTIONAL INTERFACE OF SUBMIT-CONTAINER-DB
(AMPLITUDE)

Argument Name Usage Type Description

dbamplitude-con input container dbamplitude objects

amplitude-table input character-string amplitude database
table

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The function generates detection beams for each time-interval-recipe object in the

time-interval-recipe container. The waveforms used to generate the detection

beams are extracted from the input wfdata container. The detection-recipe object

supplies the value of the parameter det-output-beam-max-slow, which is compared

with the value of slow extracted from the input detection object to ensure that

detection beams are generated only if the criterion on maximum (magnitude)

slowness is satisfied. The detection beams are generated by the DFX/libio function

create-db-detection-beam. This function has two important activities: first, it

invokes the DFX/libbeam function gobj_make_beam to perform the beamform-

ing, and second, it writes the time series of beamformed samples to the UNIX file-

system.

The function create-db-detection-beam returns a list consisting of a dbwf-

disc container and a dbwftag container. The list is nil if an error was encountered.

The containers of dbwfdisc and dbwftag objects are written to the database by the

local Scheme function submit-dbwfdisc-dbwftag. This submission function

commits the database if the submission is successful; on error it rolls back the data-

base to the state it had before calling this submission. On error, a warning message

is printed, further processing is attempted, and control is passed to the next sub-

process within the process Perform Feature Extraction.

TABLE 58: FUNCTIONAL INTERFACE OF MAKE-DET-BEAMS

Argument Name Usage Type Description

wfdata-con input container wfdata objects

beamtirec-con input container beam time-interval-
recipe objects

det-rec input GObj seismic detection
processing recipe
object

det input and output GObj detection object

n/a returned value logical scalar indicates success (t)
or failure (nil)
141

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

142

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Each detection beam is written to the UNIX filesystem in the directory and

filenames delineated by the dir and dfile attributes of the corresponding record in

the wfdisc database table. The directory name is of the form /base/YYYY/JJJ/

where JJJ is the three-digit Julian day of the year (with lead zeros as required), and

YYYY is the four-digit year for the given input waveforms used to generate the

detection beam. The base directory path is set in the DFX-detection.par file by

the data-output-base-directory parameter.

Crea te and Wr i te Dbdetec t ion
Ob jec t [1 .8 .6]

The process Perform Feature Extraction requires detection objects to be created and

written to the database. The subprocess Create and Write Dbdetection Object cre-

ates the dbdetection objects, and it submits these to the detection database table. It

is implemented by the DFX/libdb function create-dbdetection-from-detec-

tion and the global Scheme function submit-object-db. The first function is

called by the Scheme language code:

(create-dbdetection-from-detection det)

The function requires one argument, which is described in Table 59.

This function copies matching attributes from the input detection object into the

dbdetection object to the extent possible, and it sets others (chan, bmtype, jdate,

and lddate). The bulk of the parameter attributes copying is accomplished by the

DFX/libutil function gobj_to_gobj_copy. This function returns a dbdetection

TABLE 59: FUNCTIONAL INTERFACE OF CREATE-DBDETECTION-FROM-
DETECTION

Argument Name Usage Type Description

det input GObj detection object

n/a returned value GObj dbdetection object

nil (indicates error)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
object, or nil if an error was encountered. On error, a warning message is printed,

further processing is attempted, and control is passed to the next subprocess

within the process Perform Feature Extraction.

Following the generation of the dbdetection object, it is submitted to the database

for insertion into the detection table. This function is implemented by the global

Scheme function submit-object-db, which is called by the Scheme language

code:

(submit-object-db dbdetection detection-table)

The function requires two arguments, which are described in Table 60.

The function submit-object-db inserts the given object into a suitable container

(a container of the given object class) and submits the container to the database by

the global Scheme function submit-container-db for insertion into the detec-

tion table. On error, an error message is printed, no further processing is accom-

plished, and control is returned to the calling function. For more information on

submitting results to the database see “Writing to the Database” on page 44.

TABLE 60: FUNCTIONAL INTERFACE OF SUBMIT-OBJECT-DB (DETECTION)

Argument Name Usage Type Description

dbdetection input GObj dbdetection object

detection-table input character-string detection database
table

n/a returned value logical scalar indicates success (t)
or failure (nil)
143

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

144

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Es t imate and Wr i te sbsn r
Ampl i tude [1 .8 .7]

The process Perform Feature Extraction requires sbsnr amplitudes to be estimated

and written to the database. The subprocess Estimate and Write sbsnr Amplitude

performs these measurements, and it submits the results to the amplitude database

table. It is implemented by the global function create-sbsnr-dbamplitude-

from-det and the global Scheme function submit-container-db. The first

function is called by the Scheme language code:

(set! dbsbsnr-con (create-sbsnr-dbamplitude-from-det

 stdbeam-con det))

The function requires two arguments, which are described in Table 61.

This function estimates the sbsnr amplitude of the input detection object for each

of the standard beams in the input container. The sbsnr amplitude is a measure

based on the STAV and LTAV measures from a standard beam at the time of the

detection. This function returns a dbamplitude container (symbol dbsbsnr-con), or

nil if an error was encountered. On error, a warning message is printed, further

processing is attempted, and control is passed to the next subprocess within the

process Perform Feature Extraction. See [IDC5.2.1] for more information on seismic

amplitude estimation.

TABLE 61: FUNCTIONAL INTERFACE OF CREATE-SBSNR-DBAMPLITUDE-
FROM-DET

Argument Name Usage Type Description

stdbeam-con input container beam objects

det input GObj detection object

n/a returned value container dbamplitude objects

nil (indicates error)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Following the generation of the dbamplitude container (symbol dbsbsnr-con), it is

submitted to the database for insertion into the amplitude table. This function is

implemented by the global Scheme function submit-container-db, which is

called by the Scheme language code:

(submit-container-db dbsbsnr-con amplitude-table)

The function requires two arguments, which are described in Table 62.

The function submit-container-db submits the dbamplitude container (symbol

dbsbsnr) to the database for insertion into the amplitude table. On error, a warning

message is printed, further processing is attempted, and control is passed to the

next subprocess within the process Perform Feature Extraction. For more informa-

tion on submitting results to the database see “Writing to the Database” on

page 44.

Crea te and Wr i te 3 -C Ampl i tudes [1 .8 .8]

The process Perform Feature Extraction requires amplitudes to be estimated and

written to the database in cases where seismic stations have only a single 3-C sen-

sor. The subprocess Create and Write Three-component Amplitudes performs these

measurements, and it submits the results to the amp3c database table. For the

input detection object and for each recipe object in the amp3c recipe container this

function estimates 3-C amplitude using the waveforms in the wfdata container.

TABLE 62: FUNCTIONAL INTERFACE OF SUBMIT-CONTAINER-DB (SBSNR)

Argument Name Usage Type Description

dbsbsnr-con input container dbamplitude objects

amplitude-table input character-string amplitude database
table

n/a returned value logical scalar indicates success (t)
or failure (nil)
145

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

146

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This subprocess is implemented by the DFX/libdb function create-dbamp3c-

from-detection and the global Scheme function submit-container-db. The

first function is called by the Scheme language code:

(set! dbamp3c-con (create-dbamp3c-from-detection det

 wfdata-con amp3crec-con))

The function requires three arguments, which are described in Table 63.

.

The function create-dbamp3c-from-detection is implemented by the DFX/

libthreec function gobj_measure_amp3c to actually perform the amplitude esti-

mation from 3-C station’s waveforms. The function gobj_measure_amp3c

returns a dbamp3c object, or nil if an error was encountered. On error, a warning

message is printed, further processing is attempted, and control is passed to the

next subprocess in the process Perform Feature Extraction. For each 3-C amplitude-

estimation recipe in the amp3c recipe container, the function

gobj_measure_amp3c is invoked to perform the measurement. The function

create-dbamp3c-from-detection inserts the amp3c objects into a dbamp3c

container, which it returns. See [IDC5.2.1] for more information on seismic ampli-

tude estimation from 3-C stations.

Following the generation of the dbamp3c container (symbol dbamp3c-con), it is

submitted to the database for insertion into the amp3c table. This function is imple-

mented by the global Scheme function submit-container-db, which is called

by the Scheme language code:

TABLE 63: FUNCTIONAL INTERFACE OF CREATE-DBAMP3C-FROM-
DETECTION

Argument Name Usage Type Description

det input GObj detection object

wfdata-con input container wfdata objects

amp3crec-con input container 3-C amplitude esti-
mation recipe objects

n/a returned value container dbamp3c objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
(submit-container-db dbamp3c-con amp3c-table)

The function requires two arguments, which are described in Table 64.

The function submit-container-db submits the dbamp3c container to the data-

base for insertion into the amp3c table. On error, a warning message is printed, fur-

ther processing is attempted, and control is passed to the next subprocess in the

process Perform Feature Extraction. For more information on submitting results to

the database see “Writing to the Database” on page 44.

TABLE 64: FUNCTIONAL INTERFACE OF SUBMIT-CONTAINER-DB (AMP3C)

Argument Name Usage Type Description

dbamp3c-con input container dbamp3c objects

amp3c-table input character-string amp3c database table

n/a returned value logical scalar indicates success (t)
or failure (nil)
147

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

148

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
AUTOMATIC OR IG IN BEAM [2]

Automatic Origin Beam (OriginBeam) is a DFX Scheme application that generates

beams based on origins for the signals received at the seismic stations. The source

code resides in the file DFX-originbeam.scm. OriginBeam is usually run by spec-

ifying the network, start-time, end-time, and the DFX-originbeam.par file on

the command line. In operations this is governed by a Tuxedo shell. The results of

OriginBeam are written to the wfdisc and wftag tables as well as to the UNIX file-

system.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description includes the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes

■ Detailed Description of Generate and Write Origin Beams [2.3]

Genera l Desc r ip t ion

OriginBeam generates and saves origin beams for the origins in a given time inter-

val and stations in a specified network. It accomplishes this by: (i) identifying the

origins, (ii) defining the appropriate time-intervals of waveforms to acquire from

each station for all the stations in the specified network, (iii) acquiring and check-

ing the quality of these waveforms, (iv) generating the origin beams steered to the

vector slowness of the origin (for the given station), and (v) saving these origin

beams in the database and UNIX filesystem.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Arch i tec tu re

OriginBeam is implemented by a single pass through a sequence of two initializa-

tion processes followed by a pair of nested loops over the principal process, as

shown in Figure 18. The first initialization process, Query for Origins, acquires ori-

gin information for the given time interval (2.1). This process is implemented by

the function query-for-db-origin-by-time, which fills a dborigin container

with information for all the origins within the given processing time interval. The

second initialization process, Initialize Sites, acquires for the sites referenced in the

origins, all the site-specific information (2.2). This process is implemented by the

function initialize-net-sites. The third process, Generate and Write Origin

Beams (2.3) is embedded in the nested loops over origins (outer loop) and sites

(inner loop). This process accomplishes the principal objectives of this application:

the generation and storage of origin beams to the database and the UNIX filesys-

tem. Generate and Write Origin Beams is implemented by the Scheme function

process-origin-for-initsite.
149

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

 Ju
n

e
 2

0
0

1
 ID

C
-7

.1
.1

 D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 4

:

S
e

is
m

ic
 P

ro
c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

150

over sites
Loop

site
rigin

rigin
 and

s

no
more

next
site

ttr

2.4

t

igin
Perform Site

ion
FIGURE 18. ARCHITECTURE OF ORIGINBEAM

over
Loop

origins

wfdisc, wftag

-for-init

2.3

process-o

Write O
Generate

Beam

-by-time

2.1

query-for-dborigin

Origins
Query for

(in interval)

origin

affiliation,
arrival, assoc,
instrument,
origin, sensor,
site, sitechan,
wfdisc

Exit

next
origin

no
more

DbDb Db

-net-sites

2.2

initialize

Sites
Initialize

-gobj-a
extrac

and Or
Extract

waveformsD

waveformsD

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
I nput /Output

Table 65 lists the input CVAR datastore parameters used in the Scheme code.

TABLE 65: INPUT PARAMETERS FOR AUTOMATIC ORIGIN BEAM
PROCESSING

Par Name Source Default Value Description

net command
line

<none> network of stations to pro-
cess

start-time command
line

<none> start-time of the processing
interval

end-time command
line

<none> end-time of the processing
interval

data-output-wftag par file 0 flag for wftag table output:

0 means do not write to
wftag table

origin-lookback par file <none> time to subtract from both
the start- and end-times of
the processing interval in
order to determine the inter-
val in which to search for ori-
gins to process

originbeam-data
-offset-len

par file <none> time duration of data to add
to the ends of the wave-
forms interval to allow for
filter startup and taper-off

originbeam-site
-recipe-file

par file <none> filename of the site-specific
origin beam .par file

wfdisc-extension-len par file 86400 maximum time duration of
“.w” files in which binary
format waveform time series
are stored on the UNIX file-
system

affiliation-table par file affiliation table containing station and
network affiliations
151

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

152

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
All results from this application are written to the database tables described in

Table 66.

instrument-table par file instrument table containing generic
(default) calibration informa-
tion about a station

origin-table par file origin database table containing
the origin information

sensor-table par file sensor table containing specific cali-
bration information for
physical channels

site-table par file site table containing site-location
information

sitechan-table par file sitechan table containing station-
channel information

in-wfdisc-table par file wfdisc input table containing wave-
form file header and descrip-
tive information

out-wfdisc-table par file wfdisc output table containing
waveform file header and
descriptive information gen-
erated by this application

out-wftag-table par file wftag output table containing
waveform mapping informa-
tion generated by this appli-
cation

TABLE 65: INPUT PARAMETERS FOR AUTOMATIC ORIGIN BEAM
PROCESSING (CONTINUED)

Par Name Source Default Value Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
In addition to the wfdisc and wftag records in the database, the time series for each

origin beam is written to the UNIX filesystem in the directory and filenames delin-

eated by the dir and dfile attributes of the wfdisc table. The directory name is of

form /base/YYYY/JJJ/ where JJJ is the three-digit Julian day of the year (with lead

zeros as required), and YYYY is the four-digit year for the given input waveforms

used to generate the origin beam. The base directory path is set in the DFX-

originbeam.par file by the data-output-base-directory parameter. This applica-

tion returns an exit status code whose value indicates whether or not the process-

ing was successful. Successful processing exits with returned value 0; fatal errors

have return value 1; if there are no new detections the return value is 2; if there

was an unsuccessful retry of an error the returned value is 3.

The wftag table is written only if the symbol data-output-wftag is a non-zero value.

Table 231 on page 445 lists the specific attributes written by OriginBeam.

Processes

The following processes shown in Figure 18 on page 150 are described in this sec-

tion:

■ Query for Origins [2.1]

■ Initialize Sites [2.2]

■ Generate and Write Origin Beams [2.3]

TABLE 66: DATA PRODUCED BY AUTOMATIC ORIGIN BEAM PROCESSING

Name Category Description

returned value application exit status indicates success or failure

wfdisc database table origin beams generated

wftag database table maps origins to beams

“.w” binary files waveforms

origin-beam time-series samples
153

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

154

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Query fo r Or i g in s [2 .1]

This process queries the database for all the origins that occurred during a given

time interval. This process is implemented by a call to the local Scheme function

query-for-dborigin-by-time. It constructs an SQL query, which is submit-

ted to the database. If the query is successful, the results are returned in a dborigin

container.

This function is called by the Scheme language code:

(set! dborigin-con (query-for-dborigin-by-time t1 t2

 origin-table))

The function requires three arguments, which are described in Table 67.

For general information on how database queries are implemented see “Querying

the Database” on page 41. The function query-for-dborigin-by-time

returns a dborigin container (see the origin table description in [IDC5.1.1Rev2]).

TABLE 67: FUNCTIONAL INTERFACE OF QUERY-FOR-DBORIGIN-BY-TIME

Argument Name Usage Type Description

t1 input real start-time of the
interval

t2 input real end-time of the
interval

origin-table input character-string origin database
table from the
CVAR datastore

n/a returned value container dborigin objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
I n i t i a l i ze S i t e s [2 .2]

This process acquires the site-specific information that will be used to calculate

time intervals, acquire and check the quality of waveforms, and generate and save

origin beams. It is implemented by the local Scheme function initialize-net-

sites. The function is called by the Scheme language code:

(set! initsite-con (initialize-net-sites

 dborigin-container))

The function requires one argument, which is described in Table 68.

This function is described in “Network Initialization” on page 54. The function also

initializes the travel-time tables for all seismic phases and sensor stations via the

local Scheme function initialize-net-tt-tables and establishes the wave-

forms processing time interval via the local Scheme function compute-net-ti.

The function initialize-net-sites returns an initsite container. The contents

of the initsite objects for this application are listed in the OriginBeam column of

Table 8 on page 50.

Genera te and Wr i te Or i g in Beams [2 .3]

This process performs the principal activities required to generate and save origin

beams. This process is implemented by the local Scheme function process-ori-

gin-for-initsite. The function is called by the Scheme language code:

(process-origin-for-initsite initsite dborigin)

The function requires two arguments, which are described in Table 69.

TABLE 68: FUNCTIONAL INTERFACE OF INITIALIZE-NET-SITES

Argument Name Usage Type Description

dborigin-container input container dborigin objects

n/a returned value container initsite objects
155

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

156

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
For the given site and origin this function performs the following steps:

1. Extract parameters.

2. Calculate the time interval.

3. Acquire and check the quality of the waveforms.

4. Generate the origin beams.

5. Write the beams.

For further information about this function see “Detailed Description of Generate

and Write Origin Beams [2.3].”

Deta i l ed Desc r ip t ion o f Genera te
and Wr i te Or i g in Beams [2 .3]

This process calculates the required time intervals, acquires and checks the quality

of waveforms, generates the origin beams for these time intervals, and saves the

beams. It is implemented by the local Scheme function process-origin-for-

initsite. Figure 19 shows the architecture of this process. It consists of a single

pass through several subprocesses. First, the process extracts the variety of param-

eters needed to generate and write the origin beams. Then it identifies the ti-recipe

that satisfies the station-to-event distance criteria. It acquires and checks the qual-

ity of waveforms for the time interval required in the ti-recipe. Finally, it generates

the beams and writes them to the database.

TABLE 69: FUNCTIONAL INTERFACE OF PROCESS-ORIGIN-FOR-INITSITE

Argument Name Usage Type Description

initsite input GObj initsite object

dborigin input GObj dborigin object

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

157
ID

C
-7

.1
.1

 Ju
n

e
 2

0
0

1

D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 4

:

S
e

is
m

ic
 P

ro
c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

Return

M

FIGURE 19. ARCHITECTURE OF GENERATE AND WRITE ORIGIN BEAMS

over time
Loop

interval
recipes

wfdisc

no
more

next
time

interval

recipe

dborigin object
initsite object

-beams

2.3.4

compute-origin

Beams
Generate

-gobj-attr

2.3.1

extract

Parameters
Extract

Db

-for-initsite

2.3.3

read-waveforms

Waveforms
Acquire

2.3.5

submit-aux

Beams
Write

-gobj-attr

2.3.2

extract

ti-recipe
Identify

wfdiscDb

waveformsDwaveformsD

158

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The following subprocesses shown in Figure 19 are described in this section:

■ Extract Parameters [2.3.1]

■ Identify ti-recipe [2.3.2]

■ Acquire Waveforms [2.3.3]

■ Generate Beams [2.3.4]

■ Write Beams [2.3.5]

Ex t rac t Pa ramete r s [2 .3 .1]

This subprocess obtains the parameters needed to generate and write the origin

beams. Local symbols are bound through the let* macro to parameter values

obtained from input arguments. Values are extracted from objects using the com-

mon libgobj Scheme function extract-gobj-attr. In addition, the distance

from the station to the event is obtained from the DFX/libutil function compute-

distance-azimuth. Table 70 describes the symbols that are extracted from the

initsite and dborigin objects.

In addition, several other symbols are created in this subprocess. These symbols are

described in Table 71.

TABLE 70: PARAMETERS EXTRACTED FROM INITSITE AND DBORIGIN

OBJECTS BY PROCESS-ORIGIN-FOR-INITSITE

Symbol Type Source Description

orid integer dborigin object unique identification number
for the origin being processed

dbsite dbsite object initsite object information from the site table

sta character-string dbsite object station code

tirec-con ti-recipe
container

initsite object recipes used to determine the
time interval of the origin beam

beamrec-con beam recipe
container

initsite object recipes used to determine the
nature of the beams to be gen-
erated: type, steering informa-
tion, threshold, filter, and so on
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
I den t i f y t i - r ec ipe [2 .3 .2]

The process Generate and Write Origin Beams computes the origin beam for a sta-

tion-specific time interval that encompasses the signal arrivals that correspond to

the given origin. The subprocess Identify ti-recipe obtains the ti-recipe that is used

to define this time interval. The global, common libgobj, and inline intrinsic Scheme

functions map-container, extract-gobj-attr, and set!, respectively, and

the lambda structure are employed to loop over all the ti-recipes in the ti-recipes

container (symbol tirec-con from Table 70 on page 158). They find the last ti-rec-

ipe for which the station-to-event distance (symbol delta) lies inside the distance

interval specified by the limits ti-rmin and ti-rmax (which are defined in each ti-rec-

ipe). The local symbol tirec is set to this recipe. If this function fails to find a ti-rec-

ipe that contains the value of delta between its limits, the function prints an error

message and returns an error status to the calling program.

Acqu i re Wave fo rms [2 .3 .3]

This subprocess acquires the appropriate time intervals of waveforms needed to

generate and write the origin beams. Quality-control processing is applied to the

waveforms during the acquisition process. The local Scheme function read-wave-

TABLE 71: INTERNAL PARAMETERS FOR PROCESS-ORIGIN-FOR-INITSITE

Symbol Type Source Description

delta real calculated locally
by DFX/libutil

station-to-event dis-
tance (degrees)

wfdata-con container
wfdata objects

created locally information about
waveforms

dbwfdisc-dbwftag-list list created locally list of dbwfdisc and
dbwftag containers for
the origin beams that
are generated

beam-tirec time-interval
recipe object

created locally ti-recipe object for this
beam
159

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

160

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
forms-for-initsite is used to acquire and check the quality of waveforms for

the time interval required in the ti-recipe. The function is called by the Scheme lan-

guage code:

(read-waveforms-for-initsite initsite dborigin)

The function requires two arguments, which are described in Table 72.

This function returns a wfdata container, whose associated waveforms have been

checked for quality, for the stations and channels defined by the initsite for the

time interval indicated by the origin. The waveforms are acquired by a variation of

the standard method in DFX (see “Reading Waveforms” on page 58). The specific

variations are as follows:

■ The local symbol edge-len (numerically equal in value to originbeam-data-

offset-len) is extracted from the CVAR datastore by the Scheme function

mstpar.

■ The time interval (t1, t2) for waveform acquisition is generated by the

DFX/libutil function compute-site-origin-ti from the dbsite object

(contained within the initsite object), the dborigin object, and the con-

tainer of ti-recipes.

■ This interval (t1, t2) is adjusted by edge-len to eliminate edge effect from

filtering and beam steering realignments from the generated beam (t1, t2

becomes t1–edge-len, t2+edge-len).

TABLE 72: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-INITSITE

Argument Name Usage Type Description

initsite input GObj initsite object

dborigin input GObj dborigin object

n/a returned value container wfdata objects
after quality-con-
trol processing
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
■ The waveforms are checked for quality by the DFX/libqc function qc-

waveforms using the quality-control recipe extracted from the initsite

object.

Genera te Beams [2 .3 .4]

This subprocess produces the beams from the waveforms. The local Scheme func-

tion compute-origin-beams is used to produce the origin beams for this pro-

cessing interval, origin, and station. It is called by the Scheme language code:

(set! dbwfdisc-dbwftag-list (compute-origin-beams

 wfdata-con dbsite dborigin beamrec-con beam-tirec))

The function requires five arguments, which are described in Table 73.

The function compute-origin-beams returns a list consisting of a dbwfdisc con-

tainer and a dbwftag container.

The function compute-origin-beams performs the following steps:

1. Determine the number of beam recipe objects, and acquire this number

of unique wfids (waveform identity numbers) retaining the maximum

wfid value as the symbol max_wfid.

TABLE 73: FUNCTIONAL INTERFACE OF COMPUTE-ORIGIN-BEAMS

Argument Name Usage Type Description

wfdata-con input container wfdata objects

dbsite input GObj dbsite object

dborigin input GObj dborigin object

beamrec-con input container beam recipe objects

beam-tirec input GObj time-interval recipe
object

n/a returned value list dbwfdisc and
dbwftag containers
161

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

162

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
2. Fill the dbwfdisc container with the beam objects returned by the DFX/

libio function create-db-origin-beam.

3. Return a list consisting of the dbwfdisc container and the dbwftag con-

tainer. The dbwftag container is an optional return value controlled by the

parameter data-output-wftag (which must be non-zero in value to gener-

ate wftags).

The DFX/libio function create-db-origin-beam performs the following steps:

1. For each beam recipe in the input beam recipe container, compute and

write a beam encompassing a time interval determined by the input ori-

gin.

2. Write the “.w” files for the time-series data samples of each origin beam

to the appropriate file and directory.

3. Create a dbwfdisc object for each beam written, and store these in the

dbwfdisc output container.

4. If required by the value of data-output-wftag, create a dbwftag object

corresponding to each wfdisc object, and store these in the dbwftag out-

put container.

5. Return a list consisting of a beam dbwfdisc container and a dbwftag con-

tainer (which may be empty). On error, an error message is printed, pro-

cessing stops, and function create-db-origin-beam returns nil.

Wri te Beams [2 .3 .5]

This subprocess saves the generated origin beams in the database and the UNIX

filesystem. After the origin beams are generated, the returned dbwfdisc-dbwftag-

list contains dbwfdisc and dbwftag containers. The local Scheme function submit-

aux writes these to the wfdisc and wftag database tables, respectively. The function

is called by the Scheme language code:

(submit-aux dbYcon table_name)

This function has two arguments, which are described in Table 74.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The out-wfdisc-table and out-wftag-table names are extracted from the CVAR

datastore. Inline Scheme code using intrinsic functions car and cadr is used to

extract the dbwfdisc and dbwftag containers, respectively, from dbwfdisc-dbwftag-

list. The function submit-aux returns t or nil depending upon whether its pro-

cessing was successful or not. The function submit-aux is a wrapper to the global

Scheme function submit-container-db. For more information about submit-

ting results to the database see “Writing to the Database” on page 44.

Following this process, the updates to the database are “committed” by the global

Scheme function commit-db. Also, the “garbage collection” process internal to

Scheme is applied explicitly to the local wfdata container as well as to their corre-

sponding masks by the global Scheme function gc-wfdata-container applied

to symbol wfdata-con.

TABLE 74: FUNCTIONAL INTERFACE OF SUBMIT-AUX

Argument Name Usage Type Description

dbYcon input container dbY objects
either dbwfdisc or
dbwftag objects

table_name input character-string database table name

n/a returned value logical scalar indicates success (t)
or failure (nil)
163

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

164

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
INTERACT IVE BEAM-ON-THE-FLY [3]

Interactive Beam on the Fly (BOTF) is a DFX Scheme application that computes ori-

gin beams for a given origin and phase at a given set of stations. The application

source code resides in the file DFX-botf.scm. BOTF is typically called from within

ARS. ARS sends an IPC message via the DACS containing the origin information

(latitude, longitude, depth, and time), a list of stations, and the phase. BOTF then

computes and writes the beams to “.w” files of the UNIX filesystem in the appro-

priate directory and inserts the corresponding wfdisc records into the database.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description covers the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes

■ Detailed Description of Initialize Sites [3.2]

■ Detailed Description of Generate Beam [3.3]

Genera l Desc r ip t ion

BOTF was designed to allow the analyst to create origin beams after adding or

modifying an origin in ARS. A beam is essentially a “delay and sum” operation

over a set of waveforms from an array of seismic sensors. BOTF predicts the time

delays between elements from the origin, station location, and theoretical travel-

time tables for the desired phase. It applies the delays to each array element and

then sums the shifted waveforms. Because the delays are based on the origin loca-

tion, the beams produced are referred to as origin beams.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Arch i tec tu re

BOTF is constructed from three general processes (see Figure 20). The first process

extracts the input parameters that define the data to beamform (3.1). The next

process retrieves site-specific data and recipe parameters (3.2). The third process

does the bulk of the work for this application; it acquires and beamforms the

waveforms and then saves the beams to the UNIX filesystem (3.3). It occurs within

a loop over stations.

FIGURE 20. ARCHITECTURE OF BOTF

over
Loop

stations

no

next

wfdisc

wfdisc,
affiliation, site,

sensor
sitechan,

instrument

Exit

station

more

3.1

Parameters
Extract

-station-sites

3.2

initialize

Sites
Initialize

-event-beam

3.3

create-station

and Write
Generate

Db

Db

Origin Beam

waveformsD

waveformsD
165

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

166

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
I nput /Output

BOTF requires a variety of parameters, which are described in Table 75. These

parameters are acquired through the CVAR datastore and can be specified either

on the command line or in par files. The table indicates the typical method used to

specify each parameter. The tables read from the database are described in

Table 229 on page 443.

TABLE 75: INPUT PARAMETERS FOR INTERACTIVE BEAM-ON-THE-FLY
PROCESSING

Par Name Source Default Value Description

database-account command line <none> database access character-
string

lat command line <none> origin latitude

lon command line <none> origin longitude

depth command line <none> origin depth

time command line <none> origin time

dir command line <none> UNIX directory for beam
output “.w” files

wfdisc_tbl command line <none> wfdisc table for output
beams

phase1 command line - phase for beam calcula-
tion

sta command line <none> station code

qc_sta command line "" list of stations on which to
check the data quality

excluded_chans command line "" list of array channels to
omit from beams

data-offset-len par file 50.0 time added to either side
of calculated time interval
when generating beam
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
wfdisc-extension-len par file 86400 maximum time duration
of “.w” files in which
binary format waveform
time series are stored on
the UNIX filesystem

botf-tele-beamrec-list par file <none> list of beam names for
teleseismic phases

botf-reg-beamrec-list par file <none> list of beam names for
regional phases

botf-tele-tirec-list par file <none> list of time-interval recipes
for teleseismic phases

botf-reg-tirec-list par file <none> list of time-interval recipes
for regional phases

botf-regional-cutoff par file 20 degrees regional distance cutoff

botf-site-recipe-file par file <none> par file containing site-
specific recipes

affiliation-table par file affiliation table containing station
and network affiliations

instrument-table par file instrument table containing generic
(default) calibration infor-
mation about a station

sensor-table par file sensor table containing specific
calibration information for
physical channels

site-table par file site table containing site-loca-
tion information

sitechan-table par file sitechan table containing station-
channel information

in-wfdisc-table par file wfdisc input table containing
waveform file header and
descriptive information

1. The parameter phase, if set, overrides the phase types in the beam and time-interval recipes.

TABLE 75: INPUT PARAMETERS FOR INTERACTIVE BEAM-ON-THE-FLY
PROCESSING (CONTINUED)

Par Name Source Default Value Description
167

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

168

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The data produced by BOTF is described in Table 76. The beams formed by the

application are written to the UNIX filesystem as binary data files. The filenames

for the beams are a concatenation of the database account parameter and the

unique waveform identification number (wfid) with the extension “.w”. They are

placed in a subdirectory /base/YYYY/JJJ/ where base is the directory specified by

the parameter dir, YYYY is the year, and JJJ is the day of year. Database records

that point to these binary data files are inserted into the wfdisc table specified in

the parameter wfdisc_tbl. The exact attributes written are described in Table 232

on page 446.

Processes

The following processes shown in Figure 20 on page 165 are described in this sec-

tion:

■ Extract Parameters [3.1]

■ Initialize Sites [3.2]

■ Generate and Write Origin Beam [3.3]

Ex t rac t Pa ramete r s [3 .1]

This process extracts the input parameters from the CVAR datastore. The parame-

ters extracted define the stations to beamform, the origin used to predict the

appropriate time delays, and the phase type (optional) to use. This process is

implemented by inline Scheme code. Two primary objects that are specific to BOTF

TABLE 76: DATA PRODUCED BY INTERACTIVE BEAM-ON-THE-FLY
PROCESSING

Name Category Description

returned value application exit status indicates success or failure

wfdisc database table origin beams generated

“.w” binary files waveforms
origin-beam time-series samples
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
are populated at this stage: The origin information (lat, lon, depth, time, orid) is

placed in a dborigin object (symbol origin), and the station names are placed in a

list (symbol sta-list).

I n i t i a l i ze S i t e s [3 .2]

This process obtains the site-specific information from the database and loads the

recipes from the site par file. This is performed by the local Scheme function ini-

tialize-station-sites, which is called by the Scheme language code:

(set! site-data-con (initialize-station-sites origin

 station-list))

This function is a variant of the generic function initialize-net-sites

described in “Initializing Sites” on page 46. It retrieves site information, reads

travel-time tables, and initializes waveform containers. The returned container is

used later to acquire waveforms and form the desired beams.

The function requires two arguments, which are described in Table 77. The input

arguments are generic objects that contain the origin information and a list that

contains the desired stations. The function returns an initsite container (symbol

site-data-con). Each station has a corresponding initsite object, which collects the

dbsite, recipe, wfdata, and wfmem objects for the station. These objects hold infor-

mation about the waveforms and parameters for computing the beam for that sta-

tion. Table 8 on page 50 lists the objects found in the initsite object for this

application.

TABLE 77: FUNCTIONAL INTERFACE OF INITIALIZE-STATION-SITES

Argument Name Usage Type Description

origin input GObj dborigin object

station-list input list station codes

n/a returned value container initsite objects
169

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

170

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
For more information about this function see “Detailed Description of Initialize

Sites [3.2]” on page 170.

Genera te and Wr i te Or i g in Beam [3 .3]

This process performs the bulk of BOTF’s objectives. It generates and saves the

beams via the local Scheme function create-station-event-beam. The func-

tion is called within the loop over stations (see Figure 20) by the Scheme code:

(create-station-event-beam origin site-data)

The function requires two arguments, which are described in Table 78. It writes the

beams to the UNIX filesystem and inserts the corresponding records into the wfdisc

database table.

For more information about this function see “Detailed Description of Generate

and Write Origin Beam [3.3]” on page 178.

Deta i l ed Desc r ip t ion o f I n i t i a l i ze
S i t e s [3 .2]

This process retrieves site-specific information for all stations. It is implemented by

the local Scheme function initialize-station-sites. Figure 21 shows the

architecture of this process. The database is queried to find the site information

corresponding to the input station list. The function then loops over the station list

to retrieve site-specific recipes via the local Scheme function initialize-sites.

After the recipe information has been obtained, the travel-time tables are read by

TABLE 78: FUNCTIONAL INTERFACE OF CREATE-STATION-EVENT-BEAM

Argument Name Usage Type Description

origin input GObj dborigin object

site-data input GObj initsite object

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
the DFX/libutil function read-default-travel-time-tables. The necessary

data start-time and end-time are computed by the local Scheme function com-

pute-stations-ti. The time intervals are then used to create and initialize the

wfdata and wfmem containers. The channels to be excluded (specified by the user

or in a par file) are removed from the wfdata and wfmem containers. An initsite

container is formed where each object contains the relevant wfdata and wfmem

objects.

The following subprocesses shown in Figure 21 are described in this section:

■ Query for Sites [3.2.1]

■ Create initsite [3.2.2]

■ Read Travel-time Tables [3.2.3]

■ Compute Time Intervals [3.2.4]

■ Create Waveform Containers [3.2.5]

■ Populate initsite Container [3.2.6]
171

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

 Ju
n

e
 2

0
0

1
 ID

C
-7

.1
.1

 D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 4

:

S
e

is
m

ic
 P

ro
c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

172

3.2.1

3.2.6

initsite
Populate

Container

3.2.5

Create Waveform
Containers

Return

query-for-wfdata
-container

query-for-wfmem
-container

siteDb

wfdisc,
affiliation, site,

sensor
sitechan,

instrument

Db
FIGURE 21. ARCHITECTURE OF INITIALIZE SITES

station list
dborigin

-site-container
query-for-stations

Sites
Query for

over
Loop

sites?

-sites

3.2.2

initialize

initsite
Create

-time-tables

3.2.3

read-default-travel

Time Tables
Read Travel

-station-ti

3.2.4

compute

Time
Compute

Intervals

next

no

site

more

M

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Query fo r S i t e s [3 .2 .1]

This subprocess retrieves the records from the site table for the input stations. It

creates a dbsite container via the local Scheme function query-for-stations-

site-container. The function is called by the Scheme code:

(let* (stations-site-con

 (query-for-stations-site-container station-list

 origin-time)))

The function requires two arguments, which are described in Table 79. The query

finds site records for stations in the station list whose ondate and offdate bound

the origin time. The function returns a dbsite container.

For general information about how database queries are implemented see “Que-

rying the Database” on page 41.

Crea te i n i t s i t e [3 .2 .2]

This subprocess creates the actual initsite object for each station. It is implemented

via the local Scheme function initialize-sites, which is called from within a

loop over stations. The initsite objects contain the site-specific recipes for checking

the quality of and repairing the data, computing time intervals, and forming beams

(see Table 8 on page 50). The function is called by the Scheme language code:

(insert-container initsite-con (initialize-sites origin

 site))

TABLE 79: FUNCTIONAL INTERFACE OF QUERY-FOR-STATIONS-SITE-
CONTAINER

Argument Name Usage Type Description

station-list input list station codes

origin-time input real epoch time of origin

n/a returned value container dbsite objects
173

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

174

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The function requires two arguments, which are described in Table 80. It takes the

origin object and a site object for a specific station and then returns the initsite

object.

Read Trave l - t ime Tab les [3 .2 .3]

This subprocess initializes the travel-time tables for later use. The travel-time tables

are read by the DFX/libutil function read-default-travel-time-tables with

input of the required phase identifiers supplied by the local Scheme function get-

phases-from-ti-and-beam-recs operating on the dbsite container, symbol

stations-site-con. These functions are invoked via the Scheme language call:

(read-default-travel-time-tables station-site-con

 (get-phases-from-ti-and-beam-recs initsite-com))

The functions require the three arguments listed in Table 81.

TABLE 80: FUNCTIONAL INTERFACE OF INITIALIZE-SITES

Argument Name Usage Type Description

origin input GObj dborigin object

site input GObj dbsite object

n/a returned value GObj initsite object

TABLE 81: FUNCTIONAL INTERFACE OF READ-DEFAULT-TRAVEL-TIME-
TABLES

Argument Name Usage Type Description

station-site-con input container dbsite objects

(no explicit symbol) input list phase names (strings) for which
to read the travel-time tables

initsite-con input container initsite objects

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The second argument in Table 81 has no explicit symbol because it is supplied by

the output from the function get-phases-from-ti-and-beam-recs, which

returns a list of strings. The strings are the phase identifiers for which travel-time

tables are to be read. These phase identifiers are extracted from the time-interval

and beam recipes (their s- and e- phases) and beam recipes within the initsite con-

tainer. For more information on reading travel-time tables see “Determining Data

Time Intervals” on page 64.

Compute T ime In te rva l s [3 .2 .4]

Before creating the waveforms objects, the appropriate time window must be

determined. This subprocess computes the minimum start-time and maximum

end-time necessary to process all stations for the given origin via the local Scheme

function compute-stations-ti. This function is called by the Scheme language

code:

(set! stations-time-interval

 (compute-stations-ti initsite-con origin))

The function requires two arguments, which are described in Table 82. The initsite

container holds the time-interval recipe and site locations. The function retrieves all

of the seismic phases that may be used in later processing from the time-interval

recipe. It predicts the arrival times of these phases from the origin and site loca-

tions. The minimum and maximum arrival times are returned as a list. These times

will be used to create waveform containers in the next process.

TABLE 82: FUNCTIONAL INTERFACE OF COMPUTE-STATIONS-TI

Argument Name Usage Type Description

initsite-con input container initsite objects

origin input GObj dborigin object

n/a returned value list minimum and max-
imum arrival times
175

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

176

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Crea te Wave fo rm Conta ine r s [3 .2 .5]

This subprocess creates two containers, wfdata and wfmem, for later use when

acquiring waveforms. The wfdata container is created with the local Scheme func-

tion query-for-wfdata-container. A wfdata container collects the station/

channel information from the affiliation, instrument, sensor, site and sitechan tables.

This function is invoked via the Scheme language call:

(query-for-wfdata-container station-list chan-list t1 t2)

The function requires the four arguments listed in Table 83.

This function returns a wfdata container with the information about each station/

channel of the waveform data.

The local Scheme function query-for-wfmem-container creates the wfmem

container. It is invoked via the Scheme language call:

(query-for-wfmem-container station-list chan-list t1 t2)

The function requires the four arguments in Table 84.

TABLE 83: FUNCTIONAL INTERFACE OF QUERY-FOR-WFDATA-CONTAINER

Argument Name Usage Type Description

station-list input list station codes

chan-list input list channel codes

t1 input real start-time of the
waveforms to be
acquired

t2 input real end-time of the
waveforms to be
acquired

n/a returned value container wfdata objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
This function returns a wfmem container. The wfmem objects hold the wfdisc

records for each station and channel needed to form the requested beams. Once

the waveforms are acquired, the wfmem objects reference the memory-resident

time-series for each station/channel of waveforms.

This subprocess also removes any objects corresponding to channels in the param-

eter excluded_chans from the two containers, wfdata-con and wfmem-con.

For more information see “Reading Waveforms” on page 58.

Popu la te i n i t s i t e Conta ine r [3 .2 .6]

This subprocess populates the initsite container with the wfdata and wfmem con-

tainers by looping over the initsite container for each site and inserting the appro-

priate wfdata and wfmem objects in each. This is accomplished in the same manner

as described in “Network Initialization” on page 54.

TABLE 84: FUNCTIONAL INTERFACE OF QUERY-FOR-WFMEM-CONTAINER

Argument Name Usage Type Description

station-list input list station codes

chan-list input list channel codes

t1 input real start-time of the
waveforms to be
acquired

t2 input real end-time of the
waveforms to be
acquired

n/a returned value container wfmem objects
177

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

178

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Deta i l ed Desc r ip t ion o f Genera te
and Wr i te Or i g in Beam [3 .3]

The main objective of BOTF is accomplished within this process. Origin beams are

generated by the local Scheme function create-station-event-beam. Figure

22 shows the architecture of this process. First, the necessary objects and parame-

ters are extracted from the input site and origin containers for the current station.

These include the wfdata and wfmem containers created during site initialization

and the various recipe containers. Time intervals for processing are determined by

the DFX/libutil function compute-site-origin-ti (3.3.1). The necessary

waveforms are acquired and checked for quality if the quality-control flag is set

(3.3.2). The actual beams are generated by the local Scheme function compute-

origin-beams (3.3.4). Finally, the time series are written as binary files (with

“.w” extensions) to the UNIX filesystem, and the corresponding wfdisc records are

written to the output wfdisc table (3.3.5).

The following subprocesses shown in Figure 22 are described in this section:

■ Compute Time Intervals [3.3.1]

■ Acquire Waveforms [3.3.2]

■ Check Quality of Waveforms [3.3.3]

■ Create Beam [3.3.4]

■ Write to Database [3.3.5]
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
FIGURE 22. ARCHITECTURE OF GENERATE BEAM

-origin-beams

3.3.4

compute

Beam
Create

data quality
check

?

-origin-ti

3.3.1

compute-site

Time
Compute

Intervals

-waveforms

3.3.3

qc

of Waveforms
Check Quality

-db

3.3.5

submit-container

Database
Write to

Return

yes

no

-waveforms

3.3.2

read

Waveforms
Acquire

wfdiscDb

Parameters
Extract

dbsite
dboriginM

wfdiscDb

waveformsD

waveformsD
179

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

180

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Compute T ime In te rva l s [3 .3 .1]

This subprocess computes the time interval over which the beam is formed via a

DFX/libutil function that is bound to the scheme symbol compute-site-ori-

gin-ti. The function is called by the Scheme language code:

(let*(time-interval (compute-site-origin-ti site origin

 tirec-con)))

The function requires three arguments. It takes the site and origin objects and the

time interval recipe container as input and returns the minimum and maximum

times that encompass the beam. The time interval recipe specifies the phase type

and the lead and lag times to use in the computation. For more information about

determining time intervals see “Determining Data Time Intervals” on page 64.

Acqu i re Wave fo rms [3 .3 .2]

This process acquires the waveforms to beamform. It is implemented by the DFX/

libdata function read-waveforms, which is the standard DFX method (see

“Reading Waveforms” on page 58). The time interval and the wfdata and wfmem

containers are passed into the function. It places the waveforms in the wfmem

objects and sets the wfdata objects to point at the appropriate waveform in the

wfmem container.

Check Qua l i t y o f Wave fo rms [3 .3 .3]

After the waveforms are acquired, their quality is checked, and if possible, they are

repaired. To do this, the waveforms for stations that are listed in the parameter

qc-sta are processed by the DFX/libqc function qc-waveforms. For a general

description of this function see “Checking Quality of Waveforms” on page 69.

The function is passed a wfdata container and the recipe for checking the quality of

the data. The function qc-waveforms modifies the waveforms in the wfdata con-

tainer by removing spikes and incorporating other data fixing algorithms.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Crea te Beam [3 .3 .4]

This subprocess accomplishes the objective of the application, namely beamform-

ing the waveforms. Each beam is generated and written by the local Scheme func-

tion compute-origin-beams. The beams are computed in accordance with the

time-interval recipes that provide the beam duration specifications and the beam

recipes that provide the beam type, filter, and element specifications. The function

uses the azimuth and slowness values determined from the origin and site contain-

ers to calculate the necessary time delays for time-aligning the filtered waveforms.

See [IDC5.2.1] for more information on filtering and beamforming waveforms.

The function is called by the Scheme language code:

(set! beam-output (compute-origin-beams wfdata-con site

 origin beamrec-con tirec-con))

The function requires five arguments, which are described in Table 85.

The current database connection is obtained by the common libgdi function

say-db-connection. A wfid for each potential beam is obtained from the lastid

table using the global DFX Scheme function query-for-lastid. Finally, the

DFX/libio function create-db-origin-beam is called. This function computes

and writes the beams to the UNIX filesystem and returns a container of wfdisc

records that point to the new beams.

TABLE 85: FUNCTIONAL INTERFACE OF COMPUTE-ORIGIN-BEAMS

Argument Name Usage Type Description

wfdata-con input container waveform objects

site input GObj initsite object

origin input GObj dborigin object

beamrec-con input container beam recipes

tirec-con input container time-interval recipes

n/a returned value list dbwfdisc and dbw-
ftag objects
181

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

182

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Wri te to Database [3 .3 .5]

This subprocess saves the wfdisc records that point to the new beams. The records

returned by the previous function are written to the wfdisc table by the global DFX

Scheme function submit-container-db. This function is called by the Scheme

language code:

(submit-container-db dbwfdisc-con out-wfdisc-table)

The function requires two arguments, which are described in Table 86.

The function takes as input the dbwfdisc container and the name of the table. The

function returns either t or nil depending upon the success or failure of the sub-

mission. For more information about submitting results to the database see “Writ-

ing to the Database” on page 44.

TABLE 86: FUNCTIONAL INTERFACE OF SUBMIT-CONTAINER-DB (WFDISC)

Argument Name Usage Type Description

dbwfdisc-con input container dbwfdisc objects

out-wfdisc-table input character-string output table containing
waveform file header and
descriptive information gen-
erated by this application

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
INTERACT IVE SE ISMIC RECALL [4]

Interactive Seismic Recall (IntSeisRcl) is a DFX application that computes waveform

features for arrivals added or modified by the analyst. The application source code

resides in the file DFX-int-recall.scm. IntSeisRcl is typically called from within

ARS. ARS sends an IPC message through the DACS containing the origin informa-

tion (lat, lon, depth) and the names of the temporary tables that contain the arrival

information. IntSeisRcl processes each arrival and updates their primary and sec-

ondary feature estimates in the temporary tables.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description includes the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes

■ Detailed Description of Initialize Travel-time Tables [4.2]

■ Detailed Description of Perform Recall Signal Processing [4.4]

Genera l Desc r ip t ion

IntSeisRcl was designed to allow the analyst to update features for newly created

or updated arrivals. The features are similar to those estimated in automatic seismic

detection processing. The types of measurements are station dependent but can

include arrival time uncertainty, best-beam calculations, f-k spectrum and polariza-

tion analysis, snr estimation, and various amplitude measures.
183

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

184

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Arch i tec tu re

IntSeisRcl follows three general processes to estimate arrival features, as shown in

Figure 23. First, input parameters are extracted (4.1), and the travel-time tables are

initialized (4.2). The remaining processes occur within a double loop. The outer

loop is over stations, and the inner loop is over arrivals for the current station. The

site information and recipes are obtained within the outer loop (4.3). The main

computational process is located within the double loop (4.4). This process,

referred to as “recall” processing, acquires the waveforms, measures the new fea-

tures, and writes the results to the temporary database tables.

I nput /Output

A variety of parameters are needed by the process. The input CVAR datastore

parameters used in the Scheme code are described in Table 87. These parameters

are stored in the CVAR datastore and can be specified either on the command line

or in “par” files. The table indicates the typical method used to specify each

parameter.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

185
ID

C
-7

.1
.1

 Ju
n

e
 2

0
0

1

D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 4

:

S
e

is
m

ic
 P

ro
c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
Nno

more

r
p

als

site, sitechan,
sensor,
instrument,
affiliation

-initialize

4.3

create-recall

Site
Initialize

Db
FIGURE 23. ARCHITECTURE OF INTSEISRCL

wfdisc, lastid,
arrival,

amplitude,
detection, apma,

amp3c

over
Loop

unique

Exit

next

no

station

next
arrival

stations

ove
Loo

arriv

-travel-time

4.2

initialize-for

Travel-time
Initialize

Tables

more
stations

arrival, assoc site
-arrival

4.4

process-recall

Recall Signal
Perform

Processing

Db Db
Db

4.1

Parameters
Initialize

travel-time tablesD

waveformsD

186

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 87: INPUT PARAMETERS FOR INTERACTIVE SEISMIC RECALL
PROCESSING

Par Name Source
Default
Value Description

olat command line <none> origin latitude

olon command line <none> origin longitude

odepth command line <none> origin depth

database-account command line <none> database access charac-
ter-string

out-arrival-table command line <none> arrival table

out-detection-table command line <none> output table containing
signal detection informa-
tion generated by this
application

out-amplitude-table command line <none> output table containing
amplitude information
generated by this applica-
tion

out-apma-table command line <none> output table containing
particle motion analysis
information generated by
this application

out-amp3c-table command line <none> output table containing
amplitude estimates
(from 3-C stations) gen-
erated by this application

assoc-table command line <none> input association table

affiliation-table par file <none> table containing station
and network affiliations

instrument-table par file <none> table containing generic
(default) calibration infor-
mation about a station

sensor-table par file <none> table containing specific
calibration information
for physical channels
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
site-table par file <none> table containing site-
location information

sitechan-table par file <none> table containing station-
channel information

in-wfdisc-table par file <none> input table containing
waveform file header and
descriptive informations

wfdisc-extension-len par file 86400 maximum time duration
of “.w” files in which
binary format waveform
time series are stored on
the UNIX filesystem

recall-auth par file <none> string to enter into auth
field in output arrival
table

NetType par file <none> network type, as in:
“ss”, ”array”, or
”larray”

StaType par file <none> station type, as in:
“1c”, ”3c”

WaveType par file ÒÒ wave type
(““, ”hydro-”, or
”infra-”)

recall-recompute-deltim par file 0 flag used to recompute
deltim

depth-phase-snr-amprec-
list

par file <none> amplitude recipe for com-
puting depth-phase snr

depth-phase-snr-
amptype

par file db-snr amplitude type to use in
computing depth-phase
snr

recall-site-recipe-file par file <none> par file pointing to site-
specific recipe files

TABLE 87: INPUT PARAMETERS FOR INTERACTIVE SEISMIC RECALL
PROCESSING (CONTINUED)

Par Name Source
Default
Value Description
187

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

188

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The results of the processing are written to the database. Table 88 lists the data-

base tables that may be updated; however, the specific tables that are actually

updated depend on the station type and the input parameters. Table 233 on

page 446 lists the specific attributes written or updated for each of these database

tables.

recall-depth-phases par file pP, sP,
pPKP,
pPKPbc,
pPKiKP

valid depth-phase identi-
fiers

recall-detection-beams par file <none> detection beam recipes

TABLE 88: DATA WRITTEN BY INTERACTIVE SEISMIC RECALL PROCESSING

Name Category Description

returned value application exit status indicates success or failure

amplitude database table waveform amplitude for each detec-
tion

amp3c database table waveform amplitude for each detec-
tion (on 3-C stations)

apma database table particle motion analysis attributes of
each detection

arrival database table arrival attributes of each detection

detection database table detection attributes of each detection

TABLE 87: INPUT PARAMETERS FOR INTERACTIVE SEISMIC RECALL
PROCESSING (CONTINUED)

Par Name Source
Default
Value Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Processes

The following processes shown in Figure 23 on page 185 are described in this sec-

tion:

■ Initialize Parameters [4.1]

■ Initialize Travel-time Tables [4.2]

■ Initialize Site [4.3]

■ Perform Recall Signal Processing [4.4]

I n i t i a l i ze Pa ramete r s [4 .1]

This process initializes various internal variables, extracts user parameters from the

CVAR datastore, and retrieves arrival information from the database. Input param-

eters are extracted and variables are initialized by inline Scheme code. A dborigin

object is created using the command line parameters specified at run-time

The arrival information is extracted from the database and placed into dbarrival

and dbassoc containers by two local Scheme functions: query-for-dbarrival-

container and query-for-dbassoc-container. These functions have no

input parameters. Instead they obtain the relevant table names directly from the

CVAR datastore. The tables are assumed to be temporary tables that only contain

the arrivals of interest, and therefore IntSeisRcl retrieves the entire arrival and assoc

tables. The functions query-for-dbarrival-container and query-for-

dbassoc-container return a dbarrival and a dbassoc container, respectively. For

general information on how database queries are implemented see “Database

Operations” on page 40.

I n i t i a l i ze Trave l - t ime Tab les [4 .2]

This process initializes the travel-time tables so azimuth and slowness values can be

predicted in later processing. It creates a dbsite container and initializes the travel-

time table information for all relevant sites and seismic phases. This process is

implemented by the local Scheme function initialize-for-travel-time.

The function is called by the Scheme language code:
189

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

190

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
(set! dbsite-con (initialize-for-travel-time

 dbarrival-con))

The predicted azimuth and slowness information is used later to calculate the high-

est SNR beam. The function requires one argument, which is described in Table 89.

The dbarrival container is the one obtained in the previous step, Initialize Parame-

ters [4.1]. The function returns a dbsite container that includes all stations in the

arrival container. In addition, the travel-time tables are initialized for later use.

For more information on this function see “Detailed Description of Initialize Travel-

time Tables [4.2]” on page 192.

I n i t i a l i ze S i t e [4 .3]

This process retrieves site-specific information from the database and recipes from

the CVAR datastore. It is implemented by the local Scheme function create-

recall-initsite. The function is called by the Scheme language code:

(set! initsite (create-recall-initsite sta

 sta-dbarrival-con sta-dbsite dborigin))

The function reads a variety of site-specific recipes that are used later to get wave-

forms, compute beams, perform f-k analysis, and perform other computations.

The recipes are inserted into the initsite object and are read using the file specified

by the CVAR datastore parameter recall-site-recipe-file. The function is in the outer

loop in Figure 23 on page 185 and therefore is called for each station. The fourth

column of Table 8 on page 50 delineates those entities contained in the initsite

objects created by this function for IntSeisRcl. For more information about this type

of function see “Initializing Sites” on page 46.

TABLE 89: FUNCTIONAL INTERFACE OF INITIALIZE-FOR-TRAVEL-TIME

Argument Name Usage Type Description

dbarrival-con input container dbarrival objects

n/a returned value container dbsite objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The function create-recall-initsite has four arguments, which are

described in Table 90. The function is called for a single station (the current station

from the outer loop). The arrivals for this station have been extracted and placed in

their own container (symbol sta-dbarrival-con). Similarly, the site information for

this station is placed in symbol sta-dbsite, which is passed into the Scheme func-

tion. The origin object is the one created in the initialization step.

The Scheme function returns an initsite object. The initsite object holds all of the

information needed to make the various estimates for this station. This includes

station information as well as various site-specific recipes. It also contains a wfdata

container that will be used for acquiring waveforms. Table 8 on page 50 lists the

specific objects in this application’s initsite object.

Per fo rm Reca l l S i gna l P rocess ing [4 .4]

This process accomplishes the main objective of the application. It computes the

feature measurements for each arrival via the local Scheme function process-

recall-arrival. It is called for each arrival belonging to the current station. The

function’s tasks include acquiring the waveforms, finding the highest SNR beam,

estimating deltim, performing f-k or polarization analysis, and making amplitude

measurements. The results are written to the appropriate tables in the database.

The function is called by the Scheme language code:

TABLE 90: FUNCTIONAL INTERFACE OF CREATE-RECALL-INITSITE

Argument Name Usage Type Description

sta input character-string station code

sta-dbarrival-con input container dbarrival objects for
the current station

sta-dbsite input GObj dbsite object for cur-
rent station

dborigin input GObj dborigin object

n/a returned value GObj initsite object
191

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

192

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
(process-recall-arrival initsite dbarrival dbassocs-con)

The function requires three arguments, which are described in Table 91. The initsite

object was obtained in the previous process, Initialize Site [4.3]. The dbarrival

object is extracted from the arrivals container for this station. The container hold-

ing all of the associations (symbol dbassocs-con) is passed directly to the function.

The function writes the various estimates to the temporary database tables speci-

fied on input. It returns t upon successful completion of the function.

For more information about this function see “Detailed Description of Perform

Recall Signal Processing [4.4]” on page 194.

Deta i l ed Desc r ip t ion o f I n i t i a l i ze
Trave l - t ime Tab les [4 .2]

This process reads the travel-time tables into memory so they can be used to pre-

dict azimuth and slowness values in later processing. Figure 24 shows the architec-

ture of the process. Travel-time tables are initialized in three sequential

subprocesses. The stations and phases are extracted from the input dbarrival con-

tainer. The database is queried to obtain site objects for each station contained in

the symbol sta-list. Then the travel-time tables are initialized for these stations and

phases. The dbsite container is returned to the calling function.

TABLE 91: FUNCTIONAL INTERFACE OF PROCESS-RECALL-ARRIVAL

Argument Name Usage Type Description

initsite input GObj initsite object

dbarrival input GObj dbarrival object

dbassocs-con input container dbassoc objects

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
FIGURE 24. ARCHITECTURE OF INITIALIZE TRAVEL TIMES

The following subprocesses shown in Figure 24 are described in this section:

■ Query for Sites [4.2.1]

■ Read Travel-time Tables [4.2.2]

Query fo r S i t e s [4 .2 .1]

This subprocess retrieves the records from the site table for the input stations. The

dbsite container is created by the local Scheme function query-for-dbsite-by-

sta. This function queries the table specified in the CVAR parameter site-table and

places the results into a dbsite container. The query is only restricted by the station

list (symbol sta-list). For general information on database queries in DFX see

“Database Operations” on page 40.

Read Trave l - t ime Tab les [4 .2 .2]

This subprocess initializes the travel-time tables for later use. The travel-time tables

are read by the DFX/libutil function read-default-travel-time-tables. The

input parameters to this function are the dbsite container from the previous step

and the phase identifiers extracted from the arrival container. The tables are saved

in memory and can be accessed later by other DFX functions. For general informa-

tion on reading travel-time tables see “Determining Data Time Intervals” on

page 64.

Return
Parameters:

Extract

Station and
Phase Lists

-by-sta

4.2.1

query-for-dbsite

Sites
Query for

-time-tables

4.2.2

read-default-travel

Time Tables
Read Travel

M site containerdbarrival objectM travel-time tablesD
193

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

194

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Deta i l ed Desc r ip t ion o f Pe r fo rm
Reca l l S i gna l P rocess ing [4 .4]

This process performs the arrival feature estimation. Figure 25 shows the architec-

ture of this process. Five subprocesses are performed sequentially. The actual mea-

surements that are computed are station and phase dependent. The first

subprocess determines if the arrival is a depth phase. Next, the waveforms are

acquired. Then several beams are computed, which will be used to make most of

the subsequent measurements. The beams include the “best” beam (defined as

the beam with the highest snr) and the standard beams that are defined in the

beam recipes. The final two subprocesses estimate the various features and write

the results to the database.

The following subprocesses shown in Figure 25 are described in this section:

■ Identify Depth-phase Arrivals [4.4.1]

■ Acquire Waveforms [4.4.2]

■ Identify Best Beam [4.4.3]

■ Revise Detection Attributes [4.4.4]

■ Estimate Arrival Features and Write to Database [4.4.5]
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
FIGURE 25. ARCHITECTURE OF PERFORM RECALL SIGNAL PROCESSING

I den t i f y Depth -phase A r r i va l s [4 .4 .1]

This subprocess identifies depth phases and creates a flag, is-a-depth-phase, to

mark these arrivals as needing additional processing. Depth-phase arrivals are

identified by the local Scheme function check-arrival-depth-phase. The

function checks if the phase attribute from the assoc table matches one of the

phase identifiers in the CVAR parameter recall-depth-phases. The flag is-a-depth-

phase is used later to determine if the depth-phase snr should be calculated.

initsite object
dbarrival object
dbassocs object

wfdisc

Return

arrival,
detection,
apma, amplitude,
amp3c, lastid

-best-beam

4.4.3

find-recall

Best
Identify

Beam

-depth-phase

4.4.1

check-arrival

Depth-phase
Identify

Arrivals

-for-recall

4.4.2

read-waveforms

Waveforms
Acquire

-features

4.4.5

measure-recall

Features and
Estimate Arrival

Write to Database

-estimates

4.4.4

revise-recall

Detection
Revise

Attributes

M Db

Db

waveformsD
195

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

196

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Acqu i re Wave fo rms [4 .4 .2]

This subprocess acquires the appropriate waveforms that will be used to make the

feature measurements. It is implemented by a local Scheme function read-wave-

forms-for-recall, which acquires waveforms by the standard method in DFX

(see “Reading Waveforms” on page 58). The function determines an appropriate

time interval by using the detection recipe and the arrival time. It creates a wfmem

container via the global Scheme function query-for-wfmem-by-sta-chan-

time. The waveforms are read by the DFX/libdata function read-waveforms.

This function is called by the Scheme language code:

(set! wfdata-con (read-waveforms-for-recall initsite

 dbarrival))

This function calls the function read-waveforms, which is passed the time inter-

val and the wfdata and wfmem containers. It places the waveforms in the wfmem

container and sets the wfdata container to point at the appropriate waveform in

wfmem. The quality of the waveforms is checked, and if possible, repaired by the

DFX/libqc function qc-waveforms. The function returns a wfdata container.

The function read-waveforms-for-recall requires two arguments, which are

described in Table 92.

I den t i f y Bes t Beam [4 .4 .3]

This subprocess finds the “best” detection beam via the local Scheme function

find-recall-best-beam. This detection beam is used later for feature mea-

surements. The function first computes the standard beams that are specified in

TABLE 92: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-RECALL

Argument Name Usage Type Description

initsite input GObj initsite object

dbarrival input GObj dbarrival object

n/a returned value container waveforms objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
the beam recipe container. It then loops over each recipe in the detection-beam

container (detection and standard beams are separate entities). The azimuth and

slowness from the arrival table are used to steer the detection beams unless they

are null, in which case the predicted azimuth and slowness from the origin is used.

The beam recipe whose beam yields the highest snr is saved in the detection object

as the best beam. The function is called by the Scheme language code:

(find-recall-best-beam wfdata-con initsite dbarrival det)

The function requires four arguments, which are described in Table 93. The detec-

tion object is created from the dbarrival object before calling the function. All of the

other objects are from earlier processing. Both the wfdata container and initsite

object are modified within the function. The standard beams are placed in the

wfdata container, and the best-beam recipe is placed in the detection object along

with the snr.

This function returns the detection object, which was originally input, with the best

beam and snr attributes set, or nil on error.

TABLE 93: FUNCTIONAL INTERFACE OF FIND-RECALL-BEST-BEAM

Argument Name Usage Type Description

wfdata-con input and output container waveform objects

initsite input and output GObj initsite object

dbarrival input GObj dbarrival object

det input and output GObj detection object

n/a returned value GObj detection object (null
value indicates failure)
197

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

198

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Rev i se Detec t ion At t r ibu tes [4 .4 .4]

This subprocess computes the primary arrival features via the local Scheme func-

tion revise-recall-estimates. These features include: (i) uncertainty in

arrival time, (ii) amplitude for the “best” beam and the f-k beam, (iii) azimuth and

its uncertainty, and (iv) slowness and its uncertainty. The function is called by the

Scheme language code:

(revise-recall-estimates wfdata-con initsite det)

This function requires three arguments, which are described in Table 94. These

arguments are used for both input and output.

To compute the features, revise-recall-features calls several functions.

These functions are listed in Table 95.

TABLE 94: FUNCTIONAL INTERFACE OF REVISE-RECALL-FEATURES

Argument Name Usage Type Description

wfdata-con input and output container waveform objects

initsite input and output GObj initsite object

det input and output GObj detection object

n/a returned value GObj detection object (null
value indicates error)

TABLE 95: FUNCTIONS CALLED WITHIN REVISE-RECALL-
FEATURES

Function Type

calc-deltime DFX/libdetect

compute-det-amp-best-beam global Scheme

make-fk DFX/libfk

make-beamform-fk DFX/libfk
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The DFX/libdetect function calc-deltime estimates the arrival time uncertainty.

It is only executed if the CVAR parameter recompute-deltim? is set to true (t). The

attribute deltim in the detection object is updated.

Next, the global DFX function compute-det-amp-best-beam determines the

amplitude of the best beam for all arrivals and stores it in the detection object. See

[IDC5.2.1] for more information about estimating waveform amplitude.

An f-k analysis is performed for analyst-added arrivals at array stations if it was not

computed earlier. The analysis determines the beam with the highest F-statistic

(within the constraints of the f-k recipe) and stores it in the detection object. The

amplitude of the f-k beam is determined for all arrivals from array stations whether

or not they were added by the analyst. See [IDC5.2.1] for more information about

generating frequency-wavenumber spectra from arrays of seismic stations.

Polarization analysis is performed for arrivals at 3-C seismic stations. The polariza-

tion estimate for an single 3-C seismic station is determined from the covariance

matrix between the three components. The polarization for an array is an average

of this covariance matrix over the individual elements of the array. If the analyst

has made azimuth and slowness measurements on a single 3-C station, the ana-

lyst’s results are used instead of DFX’s results for the detection. See [IDC5.2.1] for

more information on performing polarization analysis from 3-C seismic stations.

compute-det-amp-fk-beam global Scheme

measure-detection-polarization DFX/libthreec

TABLE 95: FUNCTIONS CALLED WITHIN REVISE-RECALL-
FEATURES (CONTINUED)

Function Type
199

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

200

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Es t imate A r r i va l Fea tu res and
Wr i te to Database [4 .4 .5]

This subprocess creates and fills database objects, which are then written to the

appropriate database tables. It is implemented by the local Scheme function mea-

sure-recall-features. The subprocess first initializes the database objects and

then fills the appropriate objects for the station and network type via several func-

tions (see Table 96). Detection amplitude measures are made for the arrival and

depth-phase snr measurements (if appropriate). Finally the results are written to

the database tables.

The function is called by the Scheme language code:

(measure-recall-features wfdata-con initsite det

 is-a-depth-phase)

TABLE 96: DATABASE OBJECTS DEFINED IN MEASURE-RECALL-FEATURES

Database Object/Container Populated by

dbarrival DFX/libdb function
create-dbarrival-from-detection

dbdetection DFX/libdb function
create-dbdetection-from-detection

dbapma DFX/libdb function
create-dbapma-from-detection

dbamplitude-con global Scheme function
make-det-amplitudes

depth-phase-dbamplitude-con local Scheme function
make-depth-phase-amplitude

dbamp3c-con DFX/libdb function
create-dbamp3c-from-detection

sbsnr-con global Scheme function
create-dbsnr-dbamplitude-from-det
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The function measure-recall-features requires four arguments, which are

described in Table 97. The function inserts the new objects into the previously

opened database. The database tables that are written to may include arrival,

detection, apma, amplitude, and amp3c. The exact tables depend on the station and

phase types. For more information about submitting results to the database see

“Writing to the Database” on page 44.

TABLE 97: FUNCTIONAL INTERFACE OF MEASURE-RECALL-FEATURES

Argument Name Usage Type Description

wfdata-con input container waveform objects

initsite input GObj initsite object

det input GObj detection object

is-a-depth-phase input number flag indicating depth phase

n/a returned
value

logical scalar indicates success (t)
or failure (nil)
201

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

202

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
AUTOMATIC SE ISMIC RECALL [5]

Automatic Seismic Recall (AutoSeisRcl) is a DFX application that computes wave-

form feature measurements after the analyst review. The application’s source code

resides in the file DFX-recall.scm. It is usually executed in an automated pipe-

line that is queued after analyst review to compute features for analyst-added

arrivals. AutoSeisRcl retrieves arrivals and finds the associated origin and site infor-

mation. For each arrival/station pair, the “best” beam is found, the primary

attributes are estimated and screened, and secondary features are estimated. The

results are then written to the database.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description includes the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes

■ Detailed Description of Perform Recall Signal Processing [5.4]

Genera l Desc r ip t ion

AutoSeisRcl was designed to estimate features for arrivals modified or added by the

analyst. The features are similar to those estimated in automatic seismic detection

processing and interactive seismic recall processing. The actual estimates made are

station dependent but can include: (i) arrival time uncertainty, (ii) best-beam calcu-

lations, (iii) f-k and polarization analysis, and (iv) snr and various amplitude mea-

sures.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Arch i tec tu re

Figure 26 shows the architecture of AutoSeisRcl. The general flow consists of an

initialization step followed by a double loop over stations and arrivals where the

recall processing actually occurs. The initialization step consists of three primary

processes: the database is queried for the appropriate arrivals (5.1); a process is

executed to set up azimuth and slowness residual updating if the user has set the

input flag for residual updates (5.2); and a station list is extracted from the arrivals

that were obtained by the previous query.

The main automatic seismic recall data processing occurs inside the double loop.

The outer loop is a mapping over stations obtained in the initialization step. In this

loop, associations from the assoc table that belong to the current station are

extracted along with the corresponding origins. Next, an initsite object is created

for the current station (5.3). The main processing function process-recall-

arrival is executed within the inner loop, which is a mapping over arrivals

belonging to the current station (5.4).

I nput /Output

Table 98 lists the input CVAR datastore parameters used in this application.

AutoSeisRcl processes a set of arrivals. Three methods can be used to specify the

set of arrivals. The parameters used to define the arrivals are generally specified on

the command line. The remaining parameters are set or referenced in the DFX-

recall.par file. AutoSeisRcl loads the DFX-site-detection.par file, which in

turn loads in the necessary recipes (not listed here).
203

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

 Ju
n

e
 2

0
0

1
 ID

C
-7

.1
.1

 D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 4

:

S
e

is
m

ic
 P

ro
c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

204

-initsite

5.3

create-recall

Site
Initialize

no
more

over
Loop

arrivals

Db
arrival, origin,
assoc, affiliation Db assoc, origin,

site

-recall-arrival

5.4

process

Recall Signal
Perform

Processing

tions
act

tion

affiliation,
instrument,

sitechan
sensor, site,Db

travel-time tablesD
FIGURE 26. ARCHITECTURE OF AUTOSEISRCL

azres/slores
is

set
?

no

yes

Exit

no

next
station

more

over
Loop

stations

-container

5.1

query-for-dbarrival

Arrivals
Query for

5.2

Residual
Initialize for

Update

Station
Extract

List

Associa
Extr

for Sta

wfdisc, arrival,
detection, apma,

amp3c
amplitude,Db

waveformsD

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
TABLE 98: INPUT PARAMETERS FOR AUTOMATIC SEISMIC RECALL
PROCESSING

Par Name Source Default Value Description

start-time command
line

<none>1 start-time of the process-
ing interval

end-time command
line

<none>1 end-time of the process-
ing interval

net command
line

<none>1 network of stations to
process

arid command
line

<none>1 unique arrival identifica-
tion number

arrival-query command
line

<none>1 database query to
retrieve desired arrivals

database-account par file <none> database access charac-
ter-string

affiliation-table par file affiliation table containing station
and network affiliations

instrument-table par file instrument table containing generic
(default) calibration
information about a sta-
tion

sensor-table par file sensor table containing specific
calibration information
for physical channels

site-table par file site table containing site-
location information

sitechan-table par file sitechan table containing station-
channel information

origin-table par file origin input origin table

lastid-table par file lastid lastid table for getting
unique identification
numbers

in-arrival-table par file arrival input arrival table

in-assoc-table par file assoc input association table
205

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

206

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
in-wfdisc-table par file wfdisc input table containing
waveform file header
and descriptive informa-
tion

out-amplitude-table par file amplitude output table containing
amplitude information
generated by this appli-
cation

out-amp3c-table par file amp3c output table containing
amplitude estimates
(from 3-C stations) gen-
erated by this application

out-apma-table par file apma output table containing
particle motion analysis
information generated
by this application

out-arrival-table par file arrival output arrival table

out-detection-table par file detection output table containing
signal detection informa-
tion generated by this
application

recall-auth par file <none> character-string to enter
into auth attribute in
output arrival table

wfdisc-extension-len par file 86400 maximum time duration
of “.w” files in which
binary format waveform
time series are stored on
the UNIX filesystem

NetType par file <none> network type, as in:
“ss”, ”array”, or
”larray”

StaType par file <none> station type, as in:
“1c”, ”3c”

TABLE 98: INPUT PARAMETERS FOR AUTOMATIC SEISMIC RECALL
PROCESSING (CONTINUED)

Par Name Source Default Value Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The results of the processing are written to the database. Table 99 lists the data-

base tables that may be updated; however, the specific tables that are actually

updated depend on the station type and the input parameters. Table 234 on

page 447 indicates the specific attributes written or updated for each of these

database tables.

WaveType par file ÒÒ wave type (““,
”hydro-”, ”infra-”)

recall-recompute-deltim par file 0 flag used to recompute
deltim

recall-set-azres-slores par file 1 flag used to set azimuth
and slowness residuals

recall-use-snr-thresh
-best-beam

par file 0 flag used to apply the snr
threshold from the best
beam

recall-site-recipe-file par file <none> par file pointing to site
specific recipe files

1. The arrivals to be processed must be specified in one of three ways. In order of precedence
they are: (arid), (arrival-query), or (start-time, end-time, net). The IDC uses (start-time,
end-time, net).

TABLE 99: DATA UPDATED BY AUTOMATIC SEISMIC RECALL
PROCESSING

Name Category Description

returned value application exit status indicates success or failure

amplitude database table waveform amplitude for each detec-
tion

amp3c database table waveform amplitude for each detec-
tion (on 3-C stations)

TABLE 98: INPUT PARAMETERS FOR AUTOMATIC SEISMIC RECALL
PROCESSING (CONTINUED)

Par Name Source Default Value Description
207

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

208

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Processes

The following processes shown in Figure 27 on page 214 are described in this sec-

tion:

■ Query for Arrivals [5.1]

■ Initialize for Residual Update [5.2]

■ Initialize Site [5.3]

■ Perform Recall Signal Processing [5.4]

Query fo r A r r i va l s [5 .1]

This process retrieves the records from the arrival table that are to be processed. It

is implemented by a call to the local Scheme function query-for-dbarrival-

container. The process constructs a suitable database query based on the input

parameters set in the CVAR datastore to obtain the appropriate arrival information.

See “Querying the Database” on page 41 for more information about database

objects and queries. The function is called by the Scheme language code:

(set! dbarrival-con (query-for-dbarrival-container))

The function requires no arguments, and a dbarrival container is returned.

The function query-for-dbarrival-container acquires the nine parameters

described in Table 100 via access to a CVAR datastore. Three possible queries can

be formed based on the parameters that are set in the CVAR datastore. They are

listed in order of precedence in Table 101.

apma database table particle motion analysis attributes of
each detection

arrival database table arrival attributes of each detection

detection database table detection attributes of each detection

TABLE 99: DATA UPDATED BY AUTOMATIC SEISMIC RECALL
PROCESSING (CONTINUED)

Name Category Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The function applies the query to the database via the global Scheme function

query-for-container. It returns a dbarrival container with information from

the arrival table.

TABLE 100: INTERNAL SYMBOLS FOR QUERY-FOR-DBARRIVAL-CONTAINER

Symbol Type Description

start-time real start-time of this processing interval

end-time real end-time of the processing interval

origin-table character-string name of the origin table

assoc-table character-string name of the association table

arrival-table character-string name of the arrival table

affiliation-table character-string table containing station and network affiliations

arid integer unique arrival identification number

net character-string name of the network

arrival-query character-string user defined query

TABLE 101: POSSIBLE ARRIVAL QUERIES

Parameters Set in CVAR Query Description

arid query for arrival with the given arid

arrival-query query based on user provided query

start-time, end-time, net query for arrivals that were added by the analyst (in ARS)
at stations in the network, net, and are associated to ori-
gins that occurred between start-time and end-time;
excludes arrivals that were previously processed by seismic
recall processing or arrivals that are long-period phases like
‘LR’
209

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

210

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
I n i t i a l i ze fo r Res idua l Update [5 .2]

This process initializes the objects and travel-time tables needed to calculate arrival

time, azimuth, and slowness residuals. The residuals are the difference between the

observations and the predictions. The predictions are based on the origin and sta-

tion locations. The process is implemented by the local Scheme function initial-

ize-for-residual-update. This function is executed if the CVAR parameter

recall-set-azres-slores is set to a positive value or is not set at all. If it is set to a zero

or a negative value then the function is not executed. The function is called by the

Scheme language code:

(residual-output-list (initialize-for-residual-update

 dbarrival-con))

The function takes the single argument described in Table 102 and returns a list

having three containers: a dbassoc container, a dborigin container, and a dbsite

container.

The function retrieves associations from the assoc table in the database that corre-

spond to the arrivals in the input dbarrival container. Only associations that have

residual attributes set to NULL (timeres, azres, and slores) are placed in a dbassoc

container. The origin records corresponding to the dbassoc objects are retrieved

from the origin table. The function retrieves the records from the site table for all

stations in the dbassoc container. It then initializes the travel-time tables for those

stations. The local Scheme functions that perform the database queries are listed in

Table 103. See “Querying the Database” on page 41 for more information about

TABLE 102: FUNCTIONAL INTERFACE OF INITIALIZE-FOR-RESIDUAL-UPDATE

Argument Name Usage Type Description

dbarrival-con input container dbarrival objects

n/a returned value list list of dbassoc, dborigin, and
dbsite containers
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
database queries. The travel-time tables are initialized by the DFX/libutil function

read-default-travel-time-tables. See “Determining Data Time Intervals”

on page 64 for information about this function.

I n i t i a l i ze S i t e [5 .3]

Initializing site information is a standard procedure in most DFX Scheme applica-

tions. The purpose is to generate an initsite object that contains site-specific infor-

mation for later processing. Table 8 on page 50 lists the entities contained in the

initsite object. For further information on initsite objects see “Initializing Sites” on

page 46.

In AutoSeisRcl, this process is implemented by the local Scheme function create-

recall-initsite. It is called using the Scheme language code:

(set! initsite (create-recall-initsite sta

 sta-dbarrival-con sta-dbsite sta-dbassoc-con

 sta-dborigin-con))

This function requires five arguments, which are described in Table 104, and

returns an initsite object.

TABLE 103: DATABASE QUERY FUNCTIONS USED BY INITIALIZE-FOR-
RESIDUAL-UPDATE

Scheme Function Input
Container Types
Returned By Query

query-for-dbassoc-with-null
-residual-by-arids

arid-list dbassoc-con

query-for-dborigin-by-orid orid-list dborigin-con

query-for-dbsite-by-sta sta-list dbsite-con
211

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

212

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Per fo rm Reca l l S i gna l P rocess ing [5 .4]

This process performs the actual feature estimation via the local Scheme function

process-recall-arrival. It is called for each arrival belonging to the current

station. The function’s tasks include acquiring the waveforms, finding the highest

snr beam, estimating the arrival time uncertainty, performing f-k or polarization

analysis, and making amplitude measurements. The results are written to the

appropriate table in the database.

The function is called from within the inner loop of the main application by the

Scheme language code:

(process-recall-arrival initsite dbarrival)

The function requires two arguments, which are described in Table 105. The

initsite object obtained in the previous process provides the site-specific and origin

information. The dbarrival object is extracted from the dbarrivals container for this

station as shown in the inner-most loop in Figure 26 on page 204. The results of

processing the arrival are written to the database tables, which can include: arrival,

apma, amplitude, and amp3c. The exact tables depend on the station and phase

types.

TABLE 104: FUNCTIONAL INTERFACE OF CREATE-RECALL-INITSITE

Argument Name Usage Type Description

sta input character-string station code

sta-dbarrival-con input container dbarrival objects
for the input station

sta-dbsite input GObj dbsite object

sta-dbassoc-con input container dbassoc objects

sta-dborigin-con input container dborigin objects

n/a returned value GObj initsite object
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
For more information about this function, see “Detailed Description of Perform

Recall Signal Processing [5.4].”

Deta i l ed Desc r ip t ion o f Pe r fo rm
Reca l l S i gna l P rocess ing [5 .4]

Recall processing is implemented by the function process-recall-arrival.

The architecture of the process is shown in Figure 27. Within the process, six sub-

processes are executed sequentially: waveforms are acquired (5.4.1), a detection

object is created (5.4.2), the highest snr beam is found and stored in the detection

object (5.4.3), the detection attributes are created or revised (5.4.4), primary

detection measurements are screened (5.4.5), and finally, secondary features are

measured, and all of the detection attributes are written to the database (5.4.6).

The following subprocesses shown in Figure 27 are described in this section:

■ Acquire Waveforms [5.4.1]

■ Create Detection [5.4.2]

■ Identify Best Beam [5.4.3]

■ Revise Detection Attributes [5.4.4]

■ Screen Detections [5.4.5]

■ Estimate Arrival Features and Write to Database [5.4.6]

TABLE 105: FUNCTIONAL INTERFACE OF PROCESS-RECALL-ARRIVAL

Argument Name Usage Type Description

initsite input GObj initsite object

dbarrival input GObj dbarrival object

n/a returned value logical scalar indicates success (t)
or failure (nil)
213

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

214

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 27. ARCHITECTURE OF PERFORM RECALL SIGNAL PROCESSING

Acqu i re Wave fo rms [5 .4 .1]

This subprocess acquires waveforms that are used to make feature measurements.

It is implemented by the local Scheme function read-waveforms-for-recall.

Acquiring waveforms is a common procedure in many DFX Scheme applications.

The purpose is to generate wfdata and wfmem containers that store the waveforms

for the current arrival at the current station. For general information on acquiring

waveforms see “Reading Waveforms” on page 58.

The waveforms container wfdata-con is filled by the Scheme code:

Return

wfdisc

wfdisc, arrival,
detection, apma,
amplitude,
amp3c, lastid

-best-beam

5.4.3

find-det

Best
Identify

Beam

-estimates

5.4.4

revise-recall

Detection
Revise

Attributes

5.4.5

Detections
Screen

-from-dbarrival

5.4.2

create-recall-det

Detection
Create

-features

5.4.6

measure-recall

Features and
Estimate Arrival

Write to
Database

Db

Db

-for-recall

5.4.1

read-waveforms

Waveforms
Acquire

waveformsD
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
(set! wfdata-con (read-waveforms-for-recall initsite

 dbarrival))

The function requires two arguments, which are described in Table 106. The data

are returned in a wfdata container that covers a specific arrival at a single seismic

station (but may contain multiple channels). The time interval is determined from

the detection recipe and the arrival time of the current detection.

Crea te Detec t ion [5 .4 .2]

This subprocess creates a detection object, which is used throughout the computa-

tions to hold various signal attributes. It is created using the information from the

dbarrival object by the global Scheme function create-recall-det-from-

dbarrival. The function copies the matching attributes from the dbarrival object

into a detection object allowing for any necessary unit conversions. This function is

called by the Scheme language code:

(set! det (create-recall-det-from-dbarrival dbarrival))

The function requires one input argument, dbarrival, which is the current dbar-

rival object. The returned value is a detection object.

TABLE 106: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-RECALL

Argument Name Usage Type Description

initsite input/output GObj initsite object

dbarrival input GObj dbarrival object

n/a returned value container wfdata objects
215

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

216

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
I den t i f y Bes t Beam [5 .4 .3]

This subprocess finds the highest-snr beam out of all the beams in the site-specific

beam recipe file. It implemented by the local Scheme function find-det-best-

beam. The function requires the same structure as the Identify Best Beam subpro-

cess in Interactive Seismic Recall. For more information see “Identify Best Beam

[4.4.3]” on page 196.

Rev i se Detec t ion At t r ibu tes [5 .4 .4]

This subprocess performs the bulk of the feature measurements via the local

Scheme function revise-recall-estimates. These features include: (i) uncer-

tainty in arrival time, (ii) amplitude for the “best” beam and the f-k beam, (iii) azi-

muth and its uncertainty, and (iv) slowness and its uncertainty. The function is

called by the Scheme language code:

(revise-recall-estimates wfdata-con initsite det)

The function has the same structure as the Revise Detection Attributes subprocess

in Interactive Seismic Recall. For more information see “Revise Detection Attributes

[4.4.4]” on page 198.

Sc reen Detec t ions [5 .4 .5]

This subprocess screens estimates of primary detection attributes. It is implemented

by the local Scheme function screen-recall-detection, which is a wrapper

function to the global Scheme function screen-detections. The function

screen-detections compares the estimated values of primary features to

screening limits. Because only one detection is passed into the function in this

application, only feature values subject to screening are checked. No new feature

measurements are recorded for screened detections. The function is called by the

Scheme language code:

(screen-recall-detection initsite det)

The function requires two arguments, which are described in Table 107.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Es t imate A r r i va l Fea tu res and
Wr i te to Database [5 .4 .6]

This subprocess creates and fills database objects that are then written to the

appropriate database tables. It is implemented by the local Scheme function mea-

sure-recall-features. The function follows the same basic algorithm as the

Interactive Seismic Recall application with the addition of updating the slowness

and azimuth residuals if not previously set. For more information see “Estimate

Arrival Features and Write to Database [4.4.5]” on page 200.

TABLE 107: FUNCTIONAL INTERFACE OF SCREEN-RECALL-DETECTIONS

Argument Name Usage Type Description

initsite input GObj initsite object

det input and output GObj detection object

n/a returned value GObj detection object
(null value indi-
cates error)
217

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

218

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
AUTOMATIC DEPTH-PHASE SNR [6]

Automatic Depth-phase SNR (DPSNR) computes a specialized snr value for seismic

depth phases. The depth-phase snr measure is a ratio of the amplitude in a short

interval including and following the arrival to the amplitude in a short interval pre-

ceding the arrival. DPSNR writes this snr value to the amplitude table. The depth-

phase snr should not be confused with the standard snr value in the amplitude

table, which is the ratio of a detection’s maximum short-term average to the long-

term average. The application source code resides in the file DFX-depth-phase-

snr.scm. DPSNR is normally run as a post-analysis process.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description includes the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes

■ Detailed Description of Estimate Depth-phase SNR [6.3]

Genera l Desc r ip t ion

DPSNR was designed to measure the snr of depth phases. The snr computation

attempts to quantify how distinguishable the depth phase is from the surrounding

coda. Event Screening uses this value as part of its criteria in deciding the confi-

dence in the depth-phase identification and the computed event depth.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Arch i tec tu re

Figure 28 shows the architecture of DPSNR with its subordinate processes. The first

process retrieves the appropriate depth phases from the database (6.1). The princi-

pal computational process is located within a pair of nested loops: the outer loop

over stations, and the inner loop over arrivals. The outer (station) loop first extracts

station-specific parameters and database information (6.2) and then invokes the

inner (arrival) loop to perform the measurements. The inner process (6.3) reads the

waveforms, computes the snr value, and writes the amplitude records.

I nput /Output

Input processing parameters are obtained from the CVAR datastore. The input

parameters used by this process are described in Table 108. The database tables

read by this application are indicated in Table 229 on page 443.
219

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

 Ju
n

e
 2

0
0

1
 ID

C
-7

.1
.1

 D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 4

:

S
e

is
m

ic
 P

ro
c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

220

wfdisc,
affiliation,

sitechan,
site,

sensor,
instrument

Db

ival
pth

ase
e

arrivals
Loop over

-phase-initsite

6.2

create-depth

Site
Initialize

next
arrival no more

Parameters
Extract

ms
FIGURE 28. ARCHITECTURE OF DPSNR

arrival,
amplitude,

origin,
affiliation,

assoc

Db

6.1

Depth-phase
Query for

Arrivals

Non-fatal
Process

Errors
Exit

stations
Loop over

-phase-arr

6.3

process-de

Depth-ph
Estimat

SNR

next site

no
more

amplitudeDb

waveforD

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
TABLE 108: INPUT PARAMETERS FOR DEPTH-PHASE SNR
PROCESSING

Par Name Typical Usage Default Value Description

net command line <none> network of stations to
process

start-time command line <none> epoch time to use for the
start-time of the interval
containing origins to
process

end-time command line <none> end-time of the process-
ing interval

out-amplitude-
table

par file amplitude output table containing
amplitude information
generated by this appli-
cation

affiliation-table par file affiliation table containing station
and network affiliations

arrival-table par file arrival input arrival table

assoc-table par file assoc input assoc table

instrument-table par file instrument table containing generic
(default) calibration
information about a sta-
tion

origin-table par file origin input origin table

sensor-table par file sensor table containing specific
calibration information
for physical channels

site-table par file site table containing site-
location information

sitechan-table par file sitechan table containing station-
channel information

in-wfdisc-table par file wfdisc input table containing
waveform file header
and descriptive informa-
tion
221

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

222

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Table 109 lists the data produced by this application. The snr values are written to

the amplitude table. Table 235 on page 447 lists the specific attributes written by

this application.

beam-filter-onset-
len

par file 100.0 time interval in seconds
preceding and following
analysis interval provided
to allow the filter to sta-
bilize

data-offset-len par file 50.0 parameter (units = sec-
onds) used to encom-
pass any expected edge
effects from subsequent
processing

depth-phase-site
-recipe-file

par file <none> parameter file that loads
site-specific recipes

depth-phase-snr
-amprec-list

par file <none> list of amplitude recipes
to use, in the form
“amprec1,amprec2,amp
rec3...”

depth-phase-snr
-amptype

par file dp-snr string to use as the amp-
type attribute in the out-
put amplitude record

recall-depth-phases par file pP, sP, pPKP,
pPKPbc, pPKiKP

list of phases to recog-
nize as depth phases

wfdisc-extension-
len

par file 86400.0 maximum time duration
of “.w” files in which
binary format waveform
time series are stored on
the UNIX filesystem

TABLE 108: INPUT PARAMETERS FOR DEPTH-PHASE SNR
PROCESSING (CONTINUED)

Par Name Typical Usage Default Value Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Processes

The following processes shown in Figure 28 on page 220 are described in this sec-

tion:

■ Query for Depth-phase Arrivals [6.1]

■ Initialize Site [6.2]

■ Estimate Depth-phase SNR [6.3]

Query fo r Depth -phase A r r i va l s [6 .1]

This process retrieves the depth-phase arrivals for which snr values will be esti-

mated. It is implemented by the local Scheme function query-for-dbarrival-

depth-phases. The function obtains the arrival set that satisfies the following

constraints: (i) the arrivals are associated with origins in the specified input time

interval, (ii) the arrival’s phase identifier is one of the specified depth-phases, and

(iii) the arrivals do not already have a depth-phase snr measurement. This function

is called by the Scheme language code:

(set! dbarrival-con (query-for-dbarrival-depth-phases))

This function requires no arguments. It uses the internal parameters described in

Table 110 obtained from the CVAR datastore. The function returns a dbarrival con-

tainer satisfying the constraints described in the previous paragraph. For informa-

tion on database queries see “Database Operations” on page 40.

TABLE 109: DATA PRODUCED BY DEPTH-PHASE SNR PROCESSING

Name Category Description

returned value application exit status indicates success or failure

amplitude database table amplitude values for depth phases
223

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

224

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
I n i t i a l i ze S i t e [6 .2]

This process obtains station-specific processing parameters from the configuration

recipe files and site-related database tables. After the information has been col-

lected it is returned in an initsite object. Table 8 on page 50 lists the entities con-

tained in the initsite object. The initsite object is created via the station-driven

method described in “Initializing Sites” on page 46. The process is implemented by

the local Scheme function create-depth-phase-initsite. This function is

called by the Scheme language code:

(set! initsite (create-depth-phase-initsite sta

 dbarrival-con))

TABLE 110: INTERNAL SYMBOLS FOR QUERY-FOR-DBARRIVAL-DEPTH-
PHASES

Symbol Type Description

net character-string network name

start-time real epoch start-time of processing
interval

end-time real end-time of the processing
interval

affiliation-table character-string table containing station and
network affiliations

out-amplitude-table character-string output table containing ampli-
tude information generated by
this application

arrival-table character-string arrival table name

assoc-table character-string assoc table name

origin-table character-string origin table name

depth-phase-snr-amptype character-string name used to identify a depth-
phase snr measure

recall-depth-phases character-string list of recognized depth phases
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The function requires two arguments, which are described in Table 111.

Es t imate Depth-phase SNR [6 .3]

This process performs the main computation tasks for estimating the snr and writes

the computed values to the database. It performs the following steps: acquire

waveforms, measure amplitude and snr values, find the best quality measurement,

and finally, write the snr value to the amplitude table.

The processing occurs within the inner loop over arrivals (see Figure 28 on page

220). The function measures the depth-phase snr on a single arrival via the local

Scheme function process-depth-phase-arrival. It is called by the Scheme

language code:

(set! dbarrival-con (process-depth-phase-arrival initsite

 dbarrival))

This function requires two arguments, which are described in Table 112. The next

section provides more information about this function.

TABLE 111: FUNCTIONAL INTERFACE OF CREATE-DEPTH-PHASE-INITSITE

Argument Name Usage Type Description

sta input character-string station code

dbarrival-con input container dbarrival objects

n/a returned value GObj initsite object

TABLE 112: FUNCTIONAL INTERFACE OF PROCESS-DEPTH-PHASE-ARRIVAL

Argument Name Usage Type Description

initsite input GObj initsite object

dbarrival input GObj dbarrival object

n/a returned value logical scalar indicates success (t)
or failure (nil)
225

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

226

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Deta i l ed Desc r ip t ion o f E s t imate
Depth -phase SNR [6 .3]

Figure 29 shows the architecture of this process, which consists of five subpro-

cesses. The first subprocess acquires the waveforms for the input arrival (6.3.1).

Next, a set of amplitude recipes are retrieved from the initsite object. The ampli-

tude recipes cover several frequency bands, and each frequency band has two rec-

ipes; one defines the signal amplitude measure, and the other defines the pre-

signal amplitude measure. The process enters a loop over all of the amplitude reci-

pes. Each recipe is fed into the DFX/libamp function measure-detection-

amplitude (6.3.2). The amplitude measures are then saved in a dbamplitude

object. The next subprocess pairs the amplitude measures (pre-signal and signal)

for each frequency band (6.3.3). Next, the amplitudes in a frequency band that

produce the greatest snr value are chosen as the best pair (6.3.4), and that pair is

used to form the final dbamplitude object. The object is screened to ensure that it

does not already exist in the database, and finally it is written to the amplitude table

(6.3.5).

The following subprocesses shown in Figure 29 are described in this section:

■ Acquire Waveforms [6.3.1]

■ Measure Amplitudes [6.3.2]

■ Make Amplitude Pairs [6.3.3]

■ Find Best Pair [6.3.4]

■ Make Amplitude Record [6.3.5]

■ Write to Database [6.3.6]
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
FIGURE 29. ARCHITECTURE OF PERFORM ESTIMATE DEPTH-PHASE SNR

Acqu i re Wave fo rms [6 .3 .1]

This subprocess obtains waveforms surrounding the time of the input arrival. The

waveforms are used to make the amplitude measurements. They are acquired by a

local Scheme function, which is called by the code:

6.3.5

Amplitude
Make

 Record

-phase-snr

6.3.4

find-best-depth

Best
Find

Pair

-pairs

6.3.3

make-amplitude

Amplitude
Make

Pairs

-for-depth-phase

6.3.1

read-waveforms

Waveforms
Acquire

-amplitude

6.3.2

measure-detection

Amplitudes
Measure

no
more

next
recipe

amplitude
Loop over

recipes

initsite
dbarrivalM

Return

amplitudeDb

6.3.6

Database
Write to

waveformsD
227

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

228

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
(set! wfdata-con (read-waveforms-for-depth-phase initsite

 dbarrival))

This function requires two arguments, which are described in Table 113.

Within the function the waveforms are read and set into the wfmem container

through a call to DFX/libdata function read-waveforms, and their quality is

checked by the DFX/libqc function qc-waveforms. The populated wfdata con-

tainer is returned to the calling function process-depth-phase-arrival. For

more information see “Reading Waveforms” on page 58.

Measure Ampl i tudes [6 .3 .2]

This process computes a set of signal and noise amplitudes over a variety of fre-

quency bands as specified by entries in the amplitude recipe. The DFX/libamp

function measure-detection-amplitude is located within a loop over ampli-

tude recipes. The amplitude recipes are obtained from the initsite object. The

amplitude measure function is called by the Scheme code:

(set! amp (measure-detection-amplitude wfdata-con amprec

 det))

The function requires three arguments, which are described in Table 114.

TABLE 113: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-DEPTH-
PHASE

Argument Name Usage Type Description

initsite input GObj initsite object

dbarrival input GObj dbarrival object

n/a returned value container waveform objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The function returns an amplitude object. A dbamplitude object is created from the

returned amplitude object and the input detection object by the global Scheme

function create-detection-dbamplitude-from-amp. The dbamplitude

objects are collected in a container for use in subsequent processing.

Make Ampl i tude Pa i r s [6 .3 .3]

This process is implemented by the local Scheme function make-amplitude-

pairs. This function creates pairs of signal and noise measurements for the speci-

fied frequency bands so an snr measure can be computed. The signal and noise

amplitudes are matched by the chan attribute value, which contains the beam rec-

ipe name used in the amplitude measurement. Within a loop over each beam rec-

ipe, the dbamplitude objects with chan attributes matching the beam recipe name

are extracted from the dbamplitude container. There are two measurements, one

for the signal and one for the noise, for each beam. An error is printed if this not be

the case.

The signal and noise measurements are identified by their measurement times; the

noise measurements occur before the signal measurements. The pair is appended

to a list of pairs, which is returned to the calling function find-best-depth-

phase-snr (a local Scheme function).

TABLE 114: FUNCTIONAL INTERFACE OF MEASURE-DETECTION-AMPLITUDE

Argument Name Usage Type Description

wfdata-con input container waveforms

amprec input GObj amplitude recipe
parameters

det input GObj detection object

n/a returned value GObj amplitude object
229

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

230

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
F ind Bes t Pa i r [6 .3 .4]

This process is implemented by the local Scheme function find-best-snr-pair.

The function identifies the signal and noise pair with the best ratio of signal ampli-

tude to noise amplitude. First, measurement pairs without a valid noise measure-

ment are removed from the list. Next, a loop over the surviving pairs finds the

highest snr pair, and that list of paired amplitude objects is returned to the calling

function find-best-depth-phase-snr (a local Scheme function).

Make Ampl i tude Record [6 .3 .5]

This process occurs within the body of the local Scheme function find-best-

depth-phase-snr. The function uses the data from the best snr amplitude pair to

create a single dbamplitude object. The dbamplitude object is returned by the local

Scheme function find-best-snr-pair. The final amplitude record attributes are

initially set to the signal amplitude attributes of the best pair. The final amplitude

snr attribute is set to the ratio of the signal and noise amp attributes. The amptype

attribute is set to the value of the depth-phase-snr-amptype parameter, defaulting

to the value dp-snr. The per attribute is set to the inverse of the amplitude-beam

filter-band center frequency, and the bandw attribute is set to the width of the

beam filter band. The dbamplitude object is returned by find-best-snr-pair to

the calling function make-depth-phase-amplitude (a local Scheme function),

which sets it into a suitable container. This latter function then returns the con-

tainer with the best dbamplitude object to the calling function measure-depth-

phase-snr (a local Scheme function). This latter function invokes screening and

submission to the database (the activities of the database are described in the next

section).

Wri te to Database [6 .3 .6]

This process occurs within the local Scheme function measure-depth-phase-

snr. The container with the depth-phase amplitude measurement, a dbamplitude

object, is sent to the function screen-arrival-dbamplitude-by-existing

to preclude duplicate amplitude table entries (see “Screening Database Containers”

on page 43). If the dbamplitude object has not been removed by screening, it is
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
written to the database using the global Scheme function submit-container-

db. If a submission is successful, the insert is committed by the global Scheme

function commit-db; otherwise, an error message is printed. For detailed informa-

tion about submit-container-db see “Writing to the Database” on page 44.
231

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

232

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
AUTOMATIC NOISE AMPLITUDE
EST IMAT ION [7]

Automatic Noise Amplitude Estimation (NoiseAmp) is a DFX Scheme application that

produces amplitude estimates for theoretical arrivals for a given time interval and

network. The application source code resides in the file DFX-noiseamp.scm. For

each origin in the interval, NoiseAmp produces noise amplitude estimates for sta-

tions without associated arrivals. Measurements are made at the predicted arrival

times, azimuths, and slownesses for the given origin. The results of NoiseAmp are

written to the amplitude and parrival tables.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description includes the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes

■ Detailed Description of Estimate Noise Amplitude [7.5]

Genera l Desc r ip t ion

NoiseAmp determines the maximum possible signal level at stations that do not

have an observed arrival. These measures can be used in Threshold Monitoring

and in generating maximum-likelihood-estimation (MLE) magnitude estimates.

NoiseAmp was designed to operate on a network of stations within a time interval

defined by a set of origins. This suggests the principal architectural features of the

application: a pair of nested loops consisting of an outer loop over origins and an

inner loop over stations. Interior to these loops lies the computational core of the

application, the process Estimate Noise Amplitude. Before this process can be run a

variety of initialization activities must occur.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Arch i tec tu re

This application is implemented by a pair of nested loops: the outer loop over ori-

gins and the inner loop over sites, as show in Figure 30. The first initialization pro-

cess retrieves three key parameters from the CVAR datastore: start-time, end-time,

and origin-table. These define the processing interval to be searched and the name

of the database table in which to search for origins. The next two initialization pro-

cesses identify the relevant origins and develop the site-specific processing infor-

mation for these origins. After the three initialization processes are complete the

application proceeds to the pair of nested loops. The inner loop contains two pro-

cesses, which extract parameters and estimate noise amplitude. Prior to invoking

the nested loops in which the principal NoiseAmp processing is called, the follow-

ing processes are implemented: (i) initialize parameters, which are the key parame-

ters from the datastore, (ii) query the database, which is accomplished by the local

Scheme function query-for-dborigins-by-time, and returns a dborigins con-

tainer, and (iii) initiate sites, which is accomplished by the local Scheme function

initialize-net-sites, and returns an initsite container. The dborigin objects

identify the origins for which NoiseAmp processing is to be performed. The initsite

objects contain the site-specific information for the stations that are affiliated with

the network on which the origins were developed.
233

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

 Ju
n

e
 2

0
0

1
 ID

C
-7

.1
.1

 D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 4

:

S
e

is
m

ic
 P

ro
c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

234

next

no

over
Loop

sites

more

site

litude
ival

for-initsite

7.5

ocess-origin

Noise
Estimate

mplitude

7.4

arameters
Extract

waveformsD
FIGURE 30. ARCHITECTURE OF NOISEAMP

origin

affiliation,
arrival, assoc

origin, sensor
instrument,

site, sitechan,
wfdisc

Exit

no
more

over
Loop

origins

next
origin

amp
parr7.1

Parameters
Initialize

-by-time

7.2

query-for-dborigins

the
Query

Database

-sites

7.3

initialize-net

Sites
Initialize

-
pr

A

DbDb

Db

P

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
I nput /Output

NoiseAmp is called for a given network and time interval. The network code, start-

time, and end-time parameters are generally specified on the command line. The

rest of the parameters are set or referenced in the DFX-noiseamp.par file. The

input CVAR datastore parameters used in the Scheme code are described in Table

115.

TABLE 115: INPUT PARAMETERS FOR AUTOMATIC NOISE AMPLITUDE
ESTIMATION

Par Name
Typical
Usage Default Value Description

net command
line

<none> network of stations to process

start-time command
line

<none> start-time of the processing
interval

end-time command
line

<none> end-time of the processing
interval

noiseamp-max-delta par file 360.0 maximum distance to stations
(degrees)

noiseamp-min-delta par file 0.0 minimum distance to stations
(degrees)

noiseamp-data-off-
set-len

par file <none> extra data required to ensure
that NoiseAmp processing will
be free of edge effects

noiseamp-site-recipe-
file

par file <none> file containing site-specific
processing recipes

noiseamp-data-tirec-
list

par file <none> list of time-interval recipes

noiseamp-theoretical-
amprec-list

par file <none> list of amplitude estimation
processing recipes for the the-
oretical arrivals
235

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

236

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
wfdisc-extension-len par file 86400.0 maximum time duration of
“.w” files in which binary for-
mat waveform time series are
stored on the UNIX filesystem

affiliation-table par file affiliation table containing station and
network affiliations

instrument-table par file instrument table containing generic
(default) calibration informa-
tion about a station

origin-table par file origin table containing origin infor-
mation

sensor-table par file sensor table containing specific cali-
bration information for physi-
cal channels

site-table par file site table containing site-location
information

sitechan-table par file sitechan table containing station-chan-
nel information

in-arrival-table par file arrival input table containing arrival
information

in-assoc-table par file association input table containing associa-
tion information

in-wfdisc-table par file wfdisc input table containing wave-
form file header and descrip-
tive information

out-amplitude-table par file amplitude output table containing ampli-
tude information generated
by this application

out-parrival-table par file parrival output table containing pre-
dicted arrival information gen-
erated by this application

TABLE 115: INPUT PARAMETERS FOR AUTOMATIC NOISE AMPLITUDE
ESTIMATION (CONTINUED)

Par Name
Typical
Usage Default Value Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
All results from this application are written to the database tables described in

Table 116.

Table 236 on page 448 lists the database attributes written by NoiseAmp.

Processes

The following processes shown in Figure 30 on page 234 are described in this sec-

tion:

■ Initialize Parameters [7.1]

■ Query the Database [7.2]

■ Initialize Sites [7.3]

■ Extract Parameters [7.4]

■ Estimate Noise Amplitude [7.5]

I n i t i a l i ze Pa ramete r s [7 .1]

To define the processing interval and source of origin information, this process

acquires three parameters t1, t2, and origin-table via access to the CVAR datastore

using the global Scheme functions mstpar and mstspar. These parameters are

the start-time, end-time, and the database’s origin table name, respectively.

TABLE 116: DATA PRODUCED BY AUTOMATIC NOISE AMPLITUDE
ESTIMATION

Name Category Description

returned value application exit status indicates success or failure

amplitude database table predicted arrival amplitudes

parrival database table predicted arrivals
237

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

238

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Query the Database [7 .2]

To acquire the required origins, this process queries the database for origins in the

given time interval via the local Scheme function query-for-dborigins-by-

time. For general information on how database queries are implemented see

“Querying the Database” on page 41. The function query-for-dborigins-

by-time requires three arguments: the foregoing symbols t1, t2, and origin-table.

This function returns a dborigin container with objects that have the same structure

as the origin database table [IDC5.1.1Rev2].

I n i t i a l i ze S i t e s [7 .3]

A variety of site-specific information is required to support NoiseAmp. This process

extracts and generates the appropriate collection of information and returns it in

an initsite container. This is a special case of the Initialize Site function (see “Initial-

izing Sites” on page 46). This process is implemented by the local Scheme function

initialize-net-sites. The function initialize-net-sites is called by

the Scheme code:

(set! initsite-con (initialize-net-sites dborigin-con))

This function requires one argument, which is described in Table 68 on page 155.

This function returns an initsite container for all origins and the appropriate sta-

tions given the processing time interval, network, and the set of origins to process.

The seventh column of Table 8 on page 50 lists those entities contained in the

initsite objects created by this function for NoiseAmp.

The function initialize-net-sites particular to NoiseAmp rejects stations

having arrivals associated with the origin being processed. This rejection step in the

initsite creation process ensures that the downstream processing is concerned only

with those stations that did not detect an arrival from the origin.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Ex t rac t Pa ramete r s [7 .4]

This process acquires both the site-dependent and the origin-dependent parame-

ters described in Table 117. This process is implemented by the inline common

libgobj Scheme function extract-gobj-attr.

After these parameters are acquired, the principal computational process, Estimate

Noise Amplitude, is called.

Es t imate No i se Ampl i tude [7 .5]

The process Estimate Noise Amplitude performs the bulk of the NoiseAmp compu-

tational processing. It is implemented by the local Scheme function process-

origin-for-initsite. The function process-origin-for-initsite is

called by the Scheme code:

(process-origin-for-initsite initsite origin)

The function requires two arguments, which are described in Table 118.

TABLE 117: INTERNAL SYMBOLS FOR PROCESS-ORIGINS

Symbol Type Description

sta character-string station code of the station for which processing is
being performed

orid integer unique identification number of the origin for which
processing is being performed

TABLE 118: FUNCTIONAL INTERFACE OF PROCESS-ORIGIN-FOR-INITSITE

Argument Name Usage Type Description

initsite input GObj initsite object

origin input GObj dborigin object

n/a returned value logical scalar indicates success (t)
or failure (nil)
239

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

240

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The function process-origin-for-initsite performs the following steps:

1. Determine whether or not the theoretical arrival amplitudes need to be

estimated for a given origin and station, and if so, acquire the wave-

forms.

2. Estimate the amplitude.

3. Write the results to the database.

For more information about this function, see “Detailed Description of Estimate

Noise Amplitude [7.5].”

Deta i l ed Desc r ip t ion o f E s t imate
No i se Ampl i tude [7 .5]

This process contains the key elements of the NoiseAmp application. For each ori-

gin and station, it ensures that the event-to-station distance is acceptable. If so, it

gets the waveforms, estimates the amplitude, and saves the results in the data-

base.

This process is implemented by the local Scheme function process-origin-

for-initsite. Figure 31 shows the architecture of the process, which consists

of a single pass through six subprocesses. The first subprocess extracts parameters

for the given station and origin. The second and third subprocesses check the

event-to-station distance and extract the associated arrivals for this origin if any

exist. If no associated arrivals exist, the fourth subprocess acquires waveforms. The

last two subprocesses estimate origin amplitudes for the predicted arrivals (that is,

theoretical arrivals) and write the estimates for the predicted arrivals to the data-

base. The process Estimate Noise Amplitude also uses a local Scheme function,

submit-aux, to write the results to the database and roll back the database if the

submission is unsuccessful.

If the event-to-station distance fails to satisfy the distance tests, control is returned

to the calling program without further processing. If the event-to-station distance

is inside the acceptable distance interval, this process produces the estimate of

noise amplitude.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

241
ID

C
-7

.1
.1

 Ju
n

e
 2

0
0

1

D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 4

:

S
e

is
m

ic
 P

ro
c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

-amplitudes

7.5.5

measure-origin

Origin Amplitudes
Estimate

for
Predicted
Arrivals

M

FIGURE 31. ARCHITECTURE OF ESTIMATE NOISE AMPLITUDE

interval
in

event-to-station
distance

Return

no

yes

amplitude
parrival

origin object
initsite object

?

-gobj-attr

7.5.1

extract

Parameters
Extract

7.5.2

Event-to-Station
Check

Distance

to dbarsoc-con

7.5.3

subset-container applied

Associated
Extract

Arrivals
for

this Origin

-aux

7.5.6

submit

Estimates
Write

for Predicted
Arrivals

Db

7.5.4

Waveforms
Acquire

waveformsD

242

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The following subprocesses shown in Figure 31 are described in this section:

■ Extract Parameters [7.5.1]

■ Check Event-to-Station Distance [7.5.2]

■ Extract Associated Arrivals for this Origin [7.5.3]

■ Acquire Waveforms [7.5.4]

■ Estimate Origin Amplitudes for Predicted Arrivals [7.5.5]

■ Write Estimates for Predicted Arrivals [7.5.6]

Ex t rac t Pa ramete r s [7 .5 .1]

This subprocess acquires and sets values for the local symbols used to perform the

process Estimate Noise Amplitude. Inline Scheme code, via the intrinsic functions

let* and car, the global Scheme function getpar, and the common libgobj

Scheme function extract-gobj-attr, is used to acquire values, symbols,

objects, and containers of objects for the station and origin to be processed for this

time interval. In addition, the distance (symbol delta) from the event to the station

is extracted by car from the first element of the list returned by the DFX/libutil

function compute-distance-azimuth, which calculates the distance and azi-

muth. The specific parameters that are extracted are described in Table 119.

TABLE 119: INTERNAL SYMBOLS FOR EXTRACT PARAMETERS

Symbol Type Description

amplitude-table character-string name of the amplitude database table

parrival-table character-string name of the parrival database table

orid integer unique identification number for the origin
being processed

sta character-string station code of the station for which processing
is being performed

site GObjs of dbsite
class

object with site-specific information for the site
being processed

tirec-con time-interval rec-
ipe container

time-interval recipes used to estimate the noise
amplitudes
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Check Event - to -S ta t ion D i s tance [7 .5 .2]

Noise amplitude estimates are generally only useful where the event-to-station dis-

tance lies in a suitable distance interval. This subprocess determines whether this is

the situation. Inline Scheme code, via the intrinsic functions if and or, is used to

determine whether the site-to-event distance (symbol delta) is inside the bounds

set by the local symbols min-delta and max-delta, which were extracted from the

CVAR datastore (see previous paragraph). If delta is in bounds, processing contin-

ues to the next subprocess, Extract Associated Arrivals for this Origin. If delta is out

of bounds a warning message is printed and control is returned to the calling pro-

gram.

beamrec-con beam recipe con-
tainer

recipes to govern the nature of the beams to
be formed (type, direction, threshold, spectral
filtering, and so on)

amprec-con amplitude estima-
tion processing
recipe container

amplitude estimation processing recipes

arsoc-con arsoc container associated-arrivals

wfdata-con wfdata container initially empty container of information about
waveforms

dbarsoc-con dbarsoc container initially empty container of information about
associated-arrivals

delta real event-to-station distance (degrees)

min-delta real minimum event-to-station distance for
NoiseAmp processing

max-delta real maximum event-to-station distance for
NoiseAmp processing

TABLE 119: INTERNAL SYMBOLS FOR EXTRACT PARAMETERS (CONTINUED)

Symbol Type Description
243

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

244

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Ex t rac t Assoc i a ted Ar r i va l s fo r
th i s Or i g in [7 .5 .3]

This subprocess extracts the existing arrivals associated with the given origin. If

associated arrivals exist at this station then no further processing is required. Inline

Scheme code, via the intrinsic functions if and not as well as global Scheme

functions subset-container and container-empty?, is used to extract exist-

ing associated arrivals from the associated arrivals container referenced by the

initsite object. Where the associated arrivals match the current orid value and sta-

tion code (symbols orid and sta), respectively, a warning message is returned, no

further processing is performed in this subprocess, and control is returned to the

calling program. Otherwise, the process Estimate Noise Amplitude transfers control

to the next subprocess, Acquire Waveforms.

Acqu i re Wave fo rms [7 .5 .4]

This subprocess reads the waveforms for the requisite time interval and stations. It

also invokes quality-control processing to evaluate and perform minor repairs on

the waveforms. Inline Scheme code, via the intrinsic functions set! and if, the

global Scheme function container-empty?, and the local Scheme function

read-waveforms-for-initsite, is used to acquire the waveforms for this ori-

gin and initsite. The function read-waveforms-for-initsite is called by the

Scheme code:

(set! wfdata-con (read-waveforms-for-initsite initsite

 origin))

The function requires two arguments, which are described in Table 120.

TABLE 120: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-INITSITE

Argument Name Usage Type Description

initsite input GObj initsite object

origin input GObj origin object

n/a returned value container wfdata objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The function read-waveforms-for-initsite performs the following steps:

1. Initialize some local symbols.

2. Check that neither of its input arguments is null.

3. Make a local copy of the container of waveforms referenced by the

initsite object.

4. Extract the appropriate subset of time interval recipes for the waveforms

to be acquired.

5. Determine the time interval for processing based on the station-origin

distance including extra waveforms for edge effects introduced by beam-

forming.

6. Read the actual waveforms required from the wfmem container refer-

enced by the initsite object via the DFX/libdata function read-wave-

forms.

7. Evaluate and perform minor repairs on the waveforms via the DFX/libqc

function qc-waveforms.

The function read-waveforms-for-initsite returns a wfdata container (sym-

bol wfdata-con), which have been checked for quality. The wfdata objects are spe-

cifically generated for the origin, station, and time interval required to perform

beamforming in support of noise amplitude estimation. If wfdata-con proves to be

empty, a warning message is returned, processing stops in this function, and con-

trol is returned to the calling program. This function acquires waveforms by a vari-

ation of the standard method in DFX. For further details see “Reading Waveforms”

on page 58.

Es t imate Or i g in Ampl i tudes fo r
P red i c ted Ar r i va l s [7 .5 .5]

This subprocess measures amplitudes on the waveforms. It is implemented by the

global Scheme function measure-origin-amplitudes and is called by Scheme

language code such as:
245

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

246

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
(set! dbamplitude-dbparrival-list

 (measure-origin-amplitudes wfdata-con site origin

 amprec-con)

The function requires four arguments, which are described in Table 121.

Given a wfdata container, a dbsite object, a dborigin object, and a container of

amplitude estimation recipes, measure-origin-amplitudes estimates the ori-

gin-based amplitudes by calling the global Scheme function make-parrival-

amplitudes. The function measure-origin-amplitudes creates and returns a

list consisting of a dbamplitude container and a dbparrival container, each of which

contains an object for each amplitude estimation recipe. The global Scheme func-

tion make-parrival-amplitudes calls the fundamental DFX/libamp function

measure-origin-amplitude, which performs the amplitude measurements.

See [IDC5.2.1] for more information about estimating waveform amplitudes for

seismic processing.

The returned list (symbol dbamplitude-dbparrival-list) of a dbamplitude container

and a dbparrival container is decomposed into these two containers by the inline

generic Scheme functions car and cadr. If either container is empty, a warning

message is returned, processing stops in this function, and control is returned to

the calling program. If neither container is empty processing continues.

TABLE 121: FUNCTIONAL INTERFACE OF MEASURE-ORIGIN-AMPLITUDES

Argument Name Usage Type Description

wfdata-con input container wfdata objects

site input GObj dbsite object

origin input GObj dborigin object

amprec-con input container amplitude recipe
objects

n/a returned value list dbamplitude and
dbparrival con-
tainers
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Wri te Es t imates fo r P red i c ted
Ar r i va l s [7 .5 .6]

This subprocess is implemented by the local Scheme function submit-aux. It is

called by the Scheme language code:

(submit-aux dbresults-con results-table)

The function submit-aux requires two arguments, symbols dbresults-con and

results-table, which are described in Table 74 on page 163. Symbols dbYcon and

table_name in that table correspond to symbols dbresults-con and results-table

here.

The function submit-aux submits the container of results (symbol dbresults-con)

to the database for writing into the appropriate table (symbol results-table) via the

global Scheme function submit-container-db. This function returns t if suc-

cessful, and nil otherwise. There are two successive calls to submit-aux: the first

is for the dbamplitude container contents that are written to the amplitude database

table, and the second is for the dbparrival container contents that are written to

the parrival database table. If submission to the database is unsuccessful:

1. The database is rolled back to the state it had at the time of the last com-

mit.

2. A warning message is printed.

3. Processing stops in this function.

4. Control is returned to the function process-origins.

5. Processing proceeds with the next station.

If both database submissions are successful processing continues. Following the

completion of all six subprocesses, the database entries are committed by the glo-

bal Scheme function commit-db. The local waveform container and its associated

masks are then explicitly subject to garbage collection by the global Scheme func-

tion gc-wfdata-con. This latter function is called by the Scheme language code:

(gc-wfdata-con wfdata-con)

The function requires one argument, which is described in Table 122.
247

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

248

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The function gc-wfdata-con returns t if successful and nil otherwise.

TABLE 122: FUNCTIONAL INTERFACE OF GC-WFDATA-CON

Argument Name Usage Type Description

wfdata-con input container wfdata objects

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
AUTOMATIC SE ISMIC EVENT
CHARACTER IZAT ION [8]

Automatic Seismic Event Characterization (SeisEvch) is a DFX Scheme application

that extracts signal features, which can be used to characterize the nature of the

source of the event. The source code resides in the file DFX-evch.scm. SeisEvch is

usually run by specifying the network, start-time, end-time, and the DFX-

evch.par file on the command line. It is generally executed by tuxshell within the

Event Characterization pipeline. The results of SeisEvch are written to the following

database tables: amplitude, ceppks, complexity, parrival, splp, spvar, timefreq, and

thirdmom.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description includes the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes

■ Detailed Description of Estimate Event Characteristics [8.3]

Genera l Desc r ip t ion

SeisEvch processing was designed to make measurements on waveforms associ-

ated with events. The measurements may be used in event screening to identify

particular events as having natural underlying causes. SeisEvch is intended to oper-

ate on a set of origins defined by a time interval and a set of stations defined by a

seismic sensor network specified at run-time. Given the network and the process-

ing time interval, the queries to the database yield a set of events formed during

the time interval and a set of site information affiliated with the network.
249

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

250

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The time intervals to use for feature estimation at each station are well defined for

origin-based processing. This issue is very important because in passive signal pro-

cessing in general, and for estimation specifically, the quality of feature information

extracted from a detected signal is often quite sensitive to the time alignment of

the processing window within which the feature estimation is performed.

This application extracts a variety of signal attributes by computing a diversity of

estimates of the waveform properties in both the time and frequency domains.

Specifically, (i) several amplitude measures are extracted from the detected signal

as well as for theoretical arrivals (that is, predicted arrivals where no detections are

made); (ii) comparisons are made between short-period and long-period energy

levels; (iii) source-multiplicity features are computed, and cepstral analysis is per-

formed; (iv) spectral variance and time-frequency measures are made; and (v) sta-

tistical attributes are estimated, for example, the third-moment of frequency. These

attributes are believed to support characterization of some events as having arisen

from natural causes. The estimates made are saved in appropriate database tables

for subsequent analysis.

Arch i tec tu re

Figure 32 shows the top-level architecture of SeisEvch. This application is imple-

mented by a single pass through a sequence of two initialization processes, fol-

lowed by a nested pair of loops within which the principal computational

processing is accomplished. The initialization processes acquire the relevant origin

information from the database and the site-specific information for all stations rel-

evant to the origins. The main processing occurs within a nested pair of loops. The

outer one loops over origins, and the inner one loops over stations. The signal pro-

cessing and feature estimation is contained within the inner loop and is imple-

mented by the process that estimates event characteristics.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

251
ID

C
-7

.1
.1

 Ju
n

e
 2

0
0

1

D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 4

:

S
e

is
m

ic
 P

ro
c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

no

over
Loop

stations

more
FIGURE 32. ARCHITECTURE OF SEISEVCH

origin

Exit

next

no
more

over
Loop

origins

site

next
origin

8.1

Origins
Query for

-net-sites

8.2

initialize

Sites
Initialize

amplitude,
parrival, ceppks,
complexity,
splp, spvar,
thirdmom,
timefreq

affiliation,
arrival, assoc,
instrument,
origin, sensor,
site, sitechan,
wfdisc

DbDb Db

-for-initsite

8.3

process-origin

Event
Estimate

Characteristics

waveformsD

252

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
I nput /Output

SeisEvch is called for a given network and time interval. The network code, start-

time, and end-time parameters are generally specified on the command line. The

rest of the parameters are set or referenced in the DFX-evch.par file. The input

CVAR datastore parameters used in the Scheme code are described in Table 123.

TABLE 123: INPUT PARAMETERS FOR SEISMIC EVENT CHARACTERIZATION
PROCESSING

Par Name Source Default Value Description

net command
line

<none> network of stations to
process

start-time command
line

<none> start-time of the pro-
cessing interval

end-time command
line

<none> end-time of the pro-
cessing interval

database-account par file <none> database access charac-
ter-string

NetType par file <none> network type, as in:
“ss”, ”array”,
”larray”

StaType par file <none> station type, as in:
“1c”, ”3c”

BandType1 par file <none> standard frequency
band for single compo-
nent sensors

BandType3 par file <none> standard frequency
band for 3-C sensors

wfdisc-extension-len par file 86400.0 maximum time duration
of “.w” files in which
binary format wave-
form time series are
stored on the UNIX file-
system
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
data-output-wftag par file 0 flag for wftag table out-
put: 0 means do not
write to wftag table

evch-data-offset-len par file <none> time duration of extra
waveforms at the start
and end of the process-
ing interval

evch-data-tirec-list par file <none> list of time-interval reci-
pes

evch-site-recipe-file par file <none> name of the “.par” file
containing site-specific
event characterization
processing recipes

evch-arrivalamp-amprec-list par file <none> list of processing recipes
to estimate arrival
amplitudes

evch-arrivalamp-max-depth par file <none> maximum depth of
events to be processed
for arrival amplitude

evch-arrivalamp-min-delta par file <none> minimum distance of
events to be processed
for arrival amplitude
(degrees)

evch-arrivalamp-max-delta par file <none> maximum distance of
events to be processed
for arrival amplitude
(degrees)

evch-complexity-phase-list par file <none> list of phases to be used
in the complexity pro-
cessing

evch-complexity-beamrec par file <none> beam-recipe to be used
in support of the com-
plexity analysis

TABLE 123: INPUT PARAMETERS FOR SEISMIC EVENT CHARACTERIZATION
PROCESSING (CONTINUED)

Par Name Source Default Value Description
253

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

254

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
evch-complexity-min-delta par file <none> minimum distance of
events to be processed
for complexity
(degrees)

evch-complexity-max-delta par file <none> maximum distance of
events to be processed
for complexity
(degrees)

evch-fm-amprec-list par file <none> list of amplitude pro-
cessing recipes to be
used in first motion
analysis

evch-fm-phase-list par file <none> list of phases to be used
in first motion analysis

evch-originamp-amprec-list par file <none> list of processing recipes
to estimate origin
amplitudes

evch-originamp-max-depth par file <none> maximum depth of
events to be processed
for origin amplitude

evch-originamp-min-delta par file <none> minimum distance of
events to be processed
for origin amplitude
(degrees)

evch-originamp-max-delta par file <none> maximum distance of
events to be processed
for origin amplitude
(degrees)

evch-PcP-phase-list par file <none> list of PcP phases

evch-PcP-min-delta par file <none> minimum distance of
PcP phase (degrees)

evch-PcP-max-delta par file <none> maximum distance of
PcP phase (degrees)

TABLE 123: INPUT PARAMETERS FOR SEISMIC EVENT CHARACTERIZATION
PROCESSING (CONTINUED)

Par Name Source Default Value Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
evch-smult-max-depth par file <none> maximum depth of
events to be processed
for source multiplicity

evch-smult-min-delta par file <none> minimum distance of
events to be processed
for source multiplicity
(degrees)

evch-smult-max-delta par file <none> maximum distance of
events to be processed
for source multiplicity
(degrees)

evch-splp-max-depth par file <none> maximum depth of
events to be processed
for short-period-versus-
long-period analysis

evch-splp-min-delta par file <none> minimum distance of
events to be processed
for short-period-versus-
long-period analysis
(degrees)

evch-splp-max-delta par file <none> maximum distance of
events to be processed
for short-period-versus-
long-period analysis

evch-tf-phase-list par file <none> list of phases to be used
in the time-frequency
analysis

evch-tf-max-depth par file <none> maximum depth of
events to be processed
for time-frequency
analysis

evch-tf-min-delta par file <none> minimum distance of
events to be processed
for time-frequency
analysis (degrees)

TABLE 123: INPUT PARAMETERS FOR SEISMIC EVENT CHARACTERIZATION
PROCESSING (CONTINUED)

Par Name Source Default Value Description
255

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

256

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
evch-tf-max-delta par file <none> maximum distance of
events to be processed
for time-frequency
analysis (degrees)

evch-tmf-phase-list par file <none> list of phases to be used
in the third-moment-of-
frequency analysis

evch-tmf-min-delta par file <none> minimum distance of
events to be processed
for third-moment-of-
frequency analysis
(degrees)

evch-tmf-max-delta par file <none> maximum distance of
events to be processed
for third-moment-of-
frequency analysis
(degrees)

tmf-fmin par file <none> minimum frequency to
be used for third-
moment-of-frequency
analysis

tmf-fmax par file <none> maximum frequency to
be used for third-
moment-of-frequency
analysis

affiliation-table par file affiliation table containing station
and network affiliations

instrument-table par file instrument table containing generic
(default) calibration
information about a
station

origin-table par file origin table containing origin
information

TABLE 123: INPUT PARAMETERS FOR SEISMIC EVENT CHARACTERIZATION
PROCESSING (CONTINUED)

Par Name Source Default Value Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
sensor-table par file sensor table containing specific
calibration information
for physical channels

site-table par file site table containing site-
location information

sitechan-table par file sitechan table containing sta-
tion-channel informa-
tion

in-arrival-table par file arrival input table containing
arrival information

in-assoc-table par file assoc input table containing
association information

in-wfdisc-table par file wfdisc input table containing
waveform file header
and descriptive infor-
mation

origerr-table par file origerr database table contain-
ing summary of errors
in origin estimation

lastid-table par file lastid database table contain-
ing current maximum
allocated values of
identification numbers
for various tables

out-amplitude-table par file amplitude output table containing
amplitude information
generated by this appli-
cation

out-ceppks-table par file ceppks output table containing
cepstral peaks informa-
tion generated by this
application

TABLE 123: INPUT PARAMETERS FOR SEISMIC EVENT CHARACTERIZATION
PROCESSING (CONTINUED)

Par Name Source Default Value Description
257

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

258

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Table 124 lists the output of SeisEvch. The process writes the results to the data-

base, but first checks the database for results that already exist by comparing

arrival times, arids, orids, or other such indicative information. Those results that do

not already exist are written to the appropriate database tables. This processing,

which avoids duplication of results in the database, follows the conventions

described in the “Screening Database Containers” on page 43.

out-complexity-table par file complexity output table containing
complexity information
generated by this appli-
cation

out-parrival-table par file parrival output table containing
predicted arrival infor-
mation generated by
this application

out-splp-table par file splp output table containing
short-period-versus-
long-period informa-
tion generated by this
application

out-spvar-table par file spvar output table containing
spectral variance infor-
mation generated by
this application

out-tf-table par file timefreq output table containing
time-frequency infor-
mation generated by
this application

out-tmf-table par file thirdmom output table containing
third-moment-of-
frequency information
generated by this appli-
cation

TABLE 123: INPUT PARAMETERS FOR SEISMIC EVENT CHARACTERIZATION
PROCESSING (CONTINUED)

Par Name Source Default Value Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
Table 237 on page 448 indicates the specific attributes written for each of these

database tables.

Processes

The following processes shown in Figure 32 on page 251 are described in this sec-

tion:

■ Query for Origins [8.1]

■ Initialize Sites [8.2]

■ Estimate Event Characteristics [8.3]

Query fo r Or i g in s [8 .1]

Because SeisEvch bases its processing on origins, the first important information it

obtains is the set of origins for the given processing time interval. Origin informa-

tion includes the event’s time, geographic location, and depth, as well as a variety

TABLE 124: DATA PRODUCED BY SEISMIC EVENT CHARACTERIZATION
PROCESSING

Name Category Description

returned value application exit status indicates success or failure

amplitude database table waveform amplitude attributes

ceppks database table cepstral analysis attributes

complexity database table complexity analysis attributes

parrival database table predicted arrival attributes

splp database table short-period-versus-long-period
attributes

spvar database table spectral variance attributes

timefreq database table time-frequency analysis attributes

thirdmom database table third-moment-of-frequency attributes
259

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

260

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
of magnitude measures of the event. The process Query for Origins acquires infor-

mation about the relevant origins. Processing begins with the acquisition of three

parameters from the CVAR datastore: the values for start-time and end-time for

this processing time interval and the name of the origin table in the database. Pro-

cessing then continues with a query to the database for origins during the time

span of this interval via the local Scheme function query-for-dborigin-by-

time. For general information on how database queries are implemented see

“Querying the Database” on page 41.

The function query-for-dborigin-by-time is called by Scheme language

code such as:

(set! dborigin-con (query-for-dborigin-by-time start-time

 end-time origin-table))

The function requires three arguments, which are described in Table 125.

The function query-for-dborigin-by-time assumes at the outset that the

database is opened. It constructs the query string in accordance with the standard

procedures. The query string is submitted to the database by the global Scheme

function query-for-container. The returned entity is a dborigin container. If

no origins are found a message is printed and the application exits.

TABLE 125: FUNCTIONAL INTERFACE OF QUERY-FOR-DBORIGIN-BY-TIME

Argument Name Usage Type Description

start-time input real start-time of the
processing interval

end-time input real end-time of the
processing interval

dborigin-table input character-string origin table name

n/a returned value container dborigin objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
I n i t i a l i ze S i t e s [8 .2]

This process acquires the site-specific information required by SeisEvch and stores it

in an initsite container. The process is implemented by the local Scheme function

initialize-net-sites.This function is called by Scheme language code such

as:

(set! initsite-con (initialize-net-sites dborigin-con))

The function requires one argument, which is described in Table 68 on page 155.

This function accesses the CVAR datastore as well as the contents of the dborigin

container to set the values of the internal symbols described in Table 126.

TABLE 126: INTERNAL SYMBOLS FOR INITIALIZE-NET-SITES

Symbol Type Source Description

net character-string CVAR network of stations to pro-
cess

origin-time-list list dborigin-con real-valued origin times

start-time real dborigin-con minimum time in the
origin-time-list

end-time real dborigin-con end-time of the processing
interval

maximum time in the
origin-time-list

orid-list list dborigin-con integers: unique origin
identification numbers

ex-time real CVAR maximum time duration of
“.w” files in which binary
format waveform time
series are stored on the
UNIX filesystem

arrival-table character-string CVAR arrival table name

assoc-table character-string CVAR assoc table name

origin-table character-string CVAR origin table name
261

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

262

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The process Initialize Sites is a special case of the Initialize Site function (see “Ini-

tializing Sites” on page 46). In addition to the standard activities described therein,

the function initialize-net-sites performs the following steps:

1. Initialize the travel-time tables via the local Scheme function initial-

ize-net-tt-tables.

2. Calculate the waveform intervals via the local Scheme function com-

pute-net-ti.

3. Bind the symbols described in Table 127 to non-nil values, strings, lists,

objects, and containers via a set of queries to the relevant database

tables. For further information on how database queries are imple-

mented see “Querying the Database” on page 41.

wfdisc-table character-string CVAR wfdisc table name

affiliation-table character-string CVAR table containing station
and network affiliations

instrument-table character-string CVAR table containing generic
(default) calibration infor-
mation about a station

sensor-table character-string CVAR table containing specific
calibration information for
physical channels

site-table character-string CVAR table containing site-loca-
tion information

sitechan-table character-string CVAR table containing station-
channel information

TABLE 126: INTERNAL SYMBOLS FOR INITIALIZE-NET-SITES (CONTINUED)

Symbol Type Source Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
This function returns an initsite container consisting of members described in the

eighth column of Table 8 on page 50. If any of the containers described in Table 8

are returned empty, an error message is returned, and the application exits.

After the two processes Query for Origins and Initialize Sites are complete, the

computational processing is accomplished in an architecture that is implemented

with a pair of nested loops. The outer loop runs over origins, and for each given

origin the inner loop runs over the stations. (That is, the inner loop is over all sta-

tions relevant to that origin.) The processing for a given origin terminates when

there are no further stations (initsite objects) to be evaluated, and the processing

TABLE 127: INTERNAL SYMBOLS SET FROM DATABASE QUERIES WITHIN
INITIALIZE-NET-SITES

Symbol Type Source Description

dbarsoc-con container affiliation table

arrival table

assoc table

origin table

dbarsoc objects:

associated arrivals for the given
network stations

sta-list list dbarsoc-con character-strings:

unique station codes for the
given dbarsocs

dbsite-con container affiliation table

site table

dbsite container:
stations for the associated arrivals

wfdata-con container affiliation table

instrument table

sensor table

site table

sitechan table

wfdata container:

for the time interval, station list
and channel list relevant to the
origins in this processing time
interval (extended by ex-time)

wfmem-con container affiliation table

wfdisc table

wfmem container:

for the time interval, station list
and channel list relevant to the
origins in this processing time
interval (extended by ex-time)
263

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

264

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
for a given time interval terminates when there are no further origins (dborigin

objects) for that time interval. The computational processing interior to the nested

loops is implemented by the process Estimate Event Characteristics, which is called

by the local Scheme function process-origins-for-initsite. The process-

ing within this function writes all of the output to the database that results from

the computations within SeisEvch.

Es t imate Event Cha rac te r i s t i c s [8 .3]

This process acquires the waveforms and computes the values of the signal and

waveform attributes. It also saves the results of these computations in the appro-

priate database tables. The process is implemented by the local Scheme function

process-origin-for-initsite.This function is called by Scheme language

code such as:

(process-origin-for-initsite initsite dborigin dborigerr)

The function requires three arguments, which are described in Table 128.

This function operates on a single origin and station. For each single origin and for

a given station associated with that origin, the function process-origin-for-

initsite performs the following steps shown in Figure 33:

1. Initialize processing via the subprocess Extract Parameters.

2. Acquire waveforms via the subprocess Acquire Waveforms.

TABLE 128: FUNCTIONAL INTERFACE OF QUERY-FOR-DBORIGIN-BY-TIME

Argument Name Usage Type Description

initsite input GObj initsite object

dborigin input GObj dborigin object

dborigerr input GObj dborigerr object

n/a returned value scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
3. Estimate the theoretical amplitudes via the subprocess Perform Theoreti-

cal Amplitude Processing.

4. Estimate the observed amplitudes via the subprocess Perform Observed

Amplitude Processing.

5. Estimate the first motion amplitudes via the subprocess Perform First

Motion Amplitude Processing.

6. Estimate time-frequency measures via the subprocess Perform Time-fre-

quency Processing.

7. Estimate the third-moment-of-frequency measures via the subprocess

Perform Third-moment-of-frequency Processing.

8. Estimate the short-period-versus-long-period measures via the subpro-

cess Perform Short-period-versus-Long-period Processing.

9. Estimate the source-multiplicity measures via the subprocess Perform

Source Multiplicity Processing.

10. Estimate the complexity measures via the subprocess Perform Complexity

Processing.

See [IDC5.2.1] for more information on the various attributes referenced in these

steps as well as the algorithms with which they are estimated.

Warning messages are printed for any feature computation failures and existing

measurement screening. This can occur for the subprocesses in steps 3 through 10.

Any of the following conditions cause an error message to be printed and process-

ing to stop:

■ either of the input arguments initsite or dborigin is null

■ the dbarsoc container within the initsite object contains no associated

arrivals for the current station

■ the wfdata container is null

For more information about this function see the following section, Detailed

Description of Estimate Event Characteristics [8.3].
265

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

266

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Deta i l ed Desc r ip t ion o f E s t imate
Event Cha rac te r i s t i c s [8 .3]

This process acquires the waveforms and estimates the signal features used for

event characterization. It is implemented by a call to the local Scheme function

process-origin-for-initsite.

Figure 33 shows the architecture of this process, which consists of a single pass

through ten subprocesses. The first two subprocesses extract parameters from the

initsite object and dborigin object and acquire waveforms for this station for the

time interval relevant to this origin. The remaining subprocesses perform theoreti-

cal amplitude processing, observed amplitude processing, first-motion amplitude

processing, time-frequency (tf) processing, third-moment-of-frequency (tmf) pro-

cessing, short-period-versus-long-period (splp) processing, source-multiplicity

(including cepstral analysis) processing, and finally complexity processing. For sub-

processes 8.3.3 through 8.3.10, as shown in Figure 33, certain criteria must be sat-

isfied for the feature to be estimated. Table 129 on page 268 lists the criteria for

each feature.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

267
ID

C
-7

.1
.1

 Ju
n

e
 2

0
0

1

D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 4

:

S
e

is
m

ic
 P

ro
c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

amplitude

Return

complexity

Db

Db

-complexity

8.3.10

compute

Complexity
Perform

Processing

-amplitudes

8.3.5

measure-arrival

First Motion
Perform

Amplitude
Processing
FIGURE 33. ARCHITECTURE OF ESTIMATE EVENT CHARACTERISTICS

8.3.1

Parameters
Extract

amplitude,
parrival amplitude

splpthirdmomtimefreq ceppks, spvar

origin object
initsite objectM Db Db

Db DbDb Db

8.3.6

compute-tf

Time-frequency
Perform

Processing

8.3.7

compute-tmf

Third Moment
Perform

Processing

8.3.8

compute-splp

Short-period
Perform

-versus-long-
period Processing

-amplitudes

8.3.3

measure-origin

Theoretical
Perform

Amplitude
Processing

-amplitudes

8.3.4

measure-arrival

Observed
Perform

Amplitude
Processing

8.3.9

make-smult

Source
Perform

Multiplicity
Processing

-for-initsite

8.3.2

read-waveforms

Waveforms
Acquire

wfdiscDb

waveformsD

268

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 129: CRITERIA TO BE SATISFIED FOR FEATURE ESTIMATION

Feature Criteria Parameters Governing Acceptance

theoretical ampli-
tude

distance: station-to-event

depth: event

limit: evch-originamp-min-delta

limit: evch-originamp-max-delta

limit: evch-originamp-max-depth

observed amplitude distance: station-to-event

depth: event

limit: evch-arrivalamp-min-delta

limit: evch-arrivalamp-max-delta

limit: evch-arrivalamp-max-depth

first-motion ampli-
tude

phase contained in: evch-fm-phase-list

time-frequency distance: station-to-event

depth: event

limit: evch-tf-min-delta

limit: evch-tf-max-delta

limit: evch-tf-max-depth

third-moment-of-
frequency

distance: station-to-event

phase

limit: evch-tmf-min-delta

limit: evch-tmf-max-delta

contained in: evch-tmf-phase-list

short-period-versus-
long-period

distance: station-to-event

depth: event

limit: evch-splp-min-delta

limit: evch-splp-max-delta

limit: evch-splp-max-depth

source multiplicity distance: station-to-event

depth: event

limit: evch-smult-min-delta

limit: evch-smult-max-delta

limit: evch-smult-max-depth

complexity distance: station-to-event

distance: station-to-event

phase

limit: evch-complexity-min-delta

limit: evch-complexity-max-delta

AND NOT

limit: evch-PcP-min-delta

limit: evch-PcP-max-delta

AND

contained in: evch-PcP-list
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
At the conclusion of this sequence of subprocesses, the process commits the data-

base, cleans up memory associated with waveform sets, and returns control to the

calling program.

Prior to the principal processing within the function process-origin-for-

initsite the following steps are performed:

1. A local Scheme function, submit-aux, is defined.

2. Memory clean-up is explicitly ensured by invoking the global Scheme

function gc (garbage collection).

3. The input arguments are checked to ensure that neither the initsite nor

the dborigin input argument is nil. If either argument is nil, an error

message is printed and processing continues with the next station.

The function submit-aux submits results to the database via customary use of

the global Scheme function submit-container-db and, where the submission is

successful, it returns t. If the submission fails, then the database is rolled back via

the global Scheme function rollback-db to the state it had before the attempted

submission. In this case of failed submission submit-aux returns nil.

The following subprocesses shown in Figure 33 on page 267 are described in this

section:

■ Extract Parameters [8.3.1]

■ Acquire Waveforms [8.3.2]

■ Perform Theoretical Amplitude Processing [8.3.3]

■ Perform Observed Amplitude Processing [8.3.4]

■ Perform First Motion Amplitude Processing [8.3.5]

■ Perform Time-frequency Processing [8.3.6]

■ Perform Third-moment-of-frequency Processing [8.3.7]

■ Perform Short-period-versus-long-period Processing [8.3.8]

■ Perform Source-multiplicity Processing [8.3.9]

■ Perform Complexity Processing [8.3.10]
269

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

270

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Ex t rac t Pa ramete r s [8 .3 .1]

This subprocess acquires from the initsite and dborigin objects all of the parameters

required to perform the attribute computations that follow. In addition, this sub-

process obtains an arsoc container whose contents are associated with the origin

being processed and the station codes corresponding to the initsite. If the arsocs

container is empty, an error message is printed, and processing continues with the

next station. Then, the local symbol delta is set to the value of the “delta” parame-

ter (station-to-event distance) in the first arsoc object in the extracted subset.

Acqu i re Wave fo rms [8 .3 .2]

The process Estimate Event Characteristics uses waveforms to estimate the

attributes of each detected signal. These data are acquired for an appropriate time-

interval for each of the stations relevant to the event being processed. The time-

interval is calculated to ensure that the waveforms span the detected signal at the

observed or theoretical arrival time. The subprocess Acquire Waveforms accom-

plishes this requirement. It is implemented by the local Scheme function read-

waveforms-for-initsite. This function is called by Scheme language code

such as:

(set! wfdata-con (read-waveforms-for-initsite initsite

 dborigin))

The function requires two arguments, which are described in Table 130.

TABLE 130: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-INITSITE

Argument Name Usage Type Description

initsite input GObj initsite object

dborigin input GObj dborigin object

n/a returned value container wfdata objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
This function returns a wfdata container (symbol wfdata-con) that contains the

waveforms for the station being processed using a time interval predicted by the

current origin. This function acquires waveforms by a variation of the standard

method in DFX (see “Reading Waveforms” on page 58).

The function read-waveforms-for-initsite performs the following steps:

1. Make a local copy of the wfdata container within the initsite object.

2. Extract the appropriate subset of time-interval recipes, and determine the

time interval for processing via the DFX/libutil function compute-site-

origin-ti. The placement and extent of the time interval is based on

the station-origin distance. Adjustments to the time interval are made in

accordance with evch-data-offset-len to avoid edge effects in beam gen-

eration intervals.

3. Fill in the wfmem container as well as the wfmem objects within the

wfdata objects via the DFX/libdata function read-waveforms.

4. Check the quality of the waveforms via the DFX/libqc function qc-

waveforms using the quality-control recipe object contained in the

initsite object.

5. Discard stations/channels from the wfdata container identified by qual-

ity-control processing as too poor in quality. If the wfdata container is

empty following the quality-control processing, an error message is

printed and processing continues with the next station.

Per fo rm Theore t i ca l Amp l i tude
P rocess ing [8 .3 .3]

This subprocess produces amplitude estimates from the noise present on stations

that did not yield an associated detection. Only origins that fall within a minimum

and maximum distance range are processed. The station-to-event distance criteria

are set by the parameters evch-originamp-min-delta and evch-originamp-max-delta.

In addition, the origin must be shallower than a depth threshold set by the symbol

evch-originamp-max-depth, taking into account the uncertainty in the depth esti-

mate. A set of amplitude-estimation processing recipes from the initsite object is
271

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

272

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
used to compute the theoretical amplitudes. The time interval during which the

amplitude is estimated is based upon a prediction for the theoretical travel time

given the station-to-event distance and the phase. This subprocess is performed by

the global Scheme function measure-origin-amplitudes, which is called by

the Scheme language code:

(set! dbamplitude-dbparrival-list

 (measure-origin-amplitudes wfdata-con dbsite dborigin

 theo-amprec-con))

The function requires four arguments, which are described in Table 131.

The global Scheme function measure-origin-amplitudes is a wrapper to the

DFX/libamp function measure-origin-amplitude (note the singular form),

which actually performs the amplitude estimation processing.

The function measure-origin-amplitudes returns a list of dbamplitude and

dbparrival containers. If this list is nil a warning message is printed. Otherwise, the

newly generated dbparrival and dbamplitude datasets are compared with parrival

or amplitude records that already exist in the database. A duplicate parrival is

determined by matching the evid, orid, sta, and phase attributes. For dbamplitudes

the matching attributes are chan and amptype. Any duplicates found in the new

datasets are removed from the appropriate container. This subprocess follows the

general form described in “Screening Database Containers” on page 43. The

TABLE 131: FUNCTIONAL INTERFACE OF MEASURE-ORIGIN-AMPLITUDES

Argument Name Usage Type Description

wfdata-con input container wfdata objects

dbsite input GObj dbsite object

dborigin input GObj dborigin object

theo-amprec-con input container amplitude estimation
processing recipe objects

n/a returned value list dbamplitude and dbpar-
rival containers
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
screening function is accomplished by the global Scheme function screen-ori-

gin-dbamplitude-by-existing-dbamplitude. This function is called by the

Scheme language code:

(screen-origin-dbamplitude-by-existing-dbamplitude

 dbparrival-con dbamplitude-con))

The function requires two argument, which are described in Table 132.

If all of the dbamplitude objects are removed in the screening process, an informa-

tional message is printed. Otherwise, the dbamplitude container is submitted to the

database whereby the results are written to the amplitude table. Similarly, if all of

the dbparrival objects are removed in the screening process a message is printed.

Otherwise, the dbparrival container is submitted to the database whereby the

results are written to the parrival table. These submission processes are imple-

mented by the local Scheme function submit-aux, as previously discussed.

Per fo rm Obse rved Ampl i tude
P rocess ing [8 .3 .4]

This subprocess produces amplitude estimates from observed detections. Only ori-

gins that fall within a specified distance range are processed. The station-to-event

distance criteria are set by the parameters evch-arrivalamp-min-delta and evch-

arrivalamp-max-delta. In addition, the origin must be shallower than a maximum

depth threshold set by the symbol evch-arrivalamp-max-depth, taking into account

the uncertainty in the depth estimate. A set of amplitude estimation processing

TABLE 132: FUNCTIONAL INTERFACE OF SCREEN-ORIGIN-DBAMPLITUDE-
BY-EXISTING-DBAMPLITUDE

Argument Name Usage Type Description

dbparrival-con input and output container dbparrival objects

dbamplitude-con input and output container dbamplitude objects

n/a returned value list dbamplitude and
dbparrival containers
273

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

274

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
recipes from the initsite object is used to compute the observed amplitudes. This

subprocess is performed by the global Scheme function measure-arrival-

amplitudes, which is called by the Scheme language code:

(set! dbamplitude-con (measure-arrival-amplitudes

 wfdata-con dbarsoc-con dbsite dborigin obs-amprec-con))

The function requires five arguments, which are described in Table 133.

The global Scheme function measure-arrival-amplitudes is a wrapper to the

global Scheme make-arrival-amplitudes, which is itself a wrapper to the

DFX/libamp function measure-arrival-amplitude. This function actually per-

forms the amplitude estimation processing.

The function measure-arrival-amplitudes returns a dbamplitude container. If

this container is empty a warning message is printed. Otherwise, processing con-

tinues with the calling of the global Scheme function screen-arrival-dbam-

plitude-by-existing. The newly generated dbamplitude datasets are

compared with amplitude records that already exist in the database. A duplicate

dbamplitude is determined by matching the arid, chan, and amptype attributes. Any

duplicates found in the new datasets are removed from the container. This subpro-

cess follows the general form described in the “Screening Database Containers”

TABLE 133: FUNCTIONAL INTERFACE OF MEASURE-ARRIVAL-AMPLITUDES
FOR OBSERVED ARRIVALS

Argument Name Usage Type Description

wfdata-con input container wfdata objects

dbarsoc-con input container dbarsoc objects

dbsite input GObj dbsite object

dborigin input GObj dborigin object

obs-amprec-con input container amplitude estimation
processing recipe objects

n/a returned value container dbamplitude objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
on page 43. The screening function is implemented by the global Scheme function

screen-arrival-dbamplitude-by-existing. This function is called by the

Scheme language code:

(screen-arrival-dbamplitude-by-existing dbamplitude-con)

The function requires one argument, which is described in Table 134.

If all of the dbamplitude objects are removed in the screening process a message is

printed. Otherwise, the dbamplitude container is submitted to the database

whereby the results are written to the amplitude table. This latter process is imple-

mented by local Scheme function submit-aux, as previously discussed.

Per fo rm F i r s t Mot ion Ampl i tude
P rocess ing [8 .3 .5]

This subprocess produces amplitude estimates relevant to first motion. Only origins

with phases matching one or more of those on the list of first motion phases is run

through this subprocess. The list of first motion phases is set by the parameter

evch-fm-phase-list. A set of amplitude estimation processing recipes from the

initsite object is used to compute the first motion amplitudes. This subprocess is

implemented by the global Scheme function measure-arrival-amplitudes,

which is called by the Scheme language code:

(set! dbamplitude-con (measure-arrival-amplitudes

 wfdata-con fm-dbarsoc-con dbsite dborigin fm-amprec-con))

The function requires five arguments, which are described in Table 135.

TABLE 134: FUNCTIONAL INTERFACE OF SCREEN-ARRIVAL-DBAMPLITUDE-
BY-EXISTING FOR OBSERVED ARRIVALS

Argument Name Usage Type Description

dbamplitude-con input and output container dbamplitude objects

n/a returned value container dbamplitude objects
275

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

276

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The global Scheme function measure-arrival-amplitudes is a wrapper to the

global Scheme make-arrival-amplitudes, which is itself a wrapper to the

DFX/libamp function measure-arrival-amplitude. This function actually per-

forms the amplitude estimation processing.

This function measure-arrival-amplitudes returns a dbamplitude container.

If this container proves to be empty a warning message is printed. Otherwise, pro-

cessing continues with the calling of the global Scheme function screen-

arrival-dbamplitude-by-existing. The newly generated dbamplitude

datasets are compared with amplitude records that already exist in the database. A

duplicate dbamplitude is determined by matching the arid, chan, and amptype

attributes. Any duplicates found in the new datasets are removed from the con-

tainer. This subprocess follows the general form described in “Screening Database

Containers” on page 43. The screening function is implemented by the global

Scheme function screen-arrival-dbamplitude-by-existing. This function

is called by the Scheme language code:

(screen-arrival-dbamplitude-by-existing dbamplitude-con)

The function requires one argument, which is described in Table 136.

TABLE 135: FUNCTIONAL INTERFACE OF MEASURE-ARRIVAL-AMPLITUDES
FOR FIRST MOTION

Argument Name Usage Type Description

wfdata-con input container wfdata objects

fm-dbarsoc-con input container dbarsoc objects with
phases suitable for first
motion estimates

dbsite input GObj dbsite object

dborigin input GObj dborigin object

fm-amprec-con input container amplitude estimation
processing recipe
objects for first motion

n/a returned value container dbamplitude objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
If all of the dbamplitude objects are removed in the screening process a message is

printed. Otherwise, the dbamplitude container is submitted to the database

whereby the results are written to the amplitude table. This latter process is imple-

mented by the local Scheme function submit-aux, as previously discussed.

Per fo rm T ime- f requency
P rocess ing [8 .3 .6]

This subprocess produces time-frequency (tf) estimates for the detected signals.

Only origins that fall within a specified distance range are processed. The station-

to-event distance criteria are set by the parameters evch-tf-min-delta and evch-tf-

max-delta. In addition, the origin must be shallower than a maximum depth crite-

rion set by symbol evch-tf-max-depth. Finally, only origins with phases matching

one or more of those on the list of time-frequency phases is run through this sub-

process. The list of time-frequency phases is set by the parameter evch-tf-phase-

list. A time-frequency estimation processing recipe from the initsite object is used

to compute the time-frequency measures. This subprocess is performed by the

local Scheme function compute-tf. This function is called by the Scheme lan-

guage code:

(set! dbtf-con (compute-tf wfdata-con dborigin

 tf-dbarsoc-con tf-rec))

The function requires four arguments, which are described in Table 137.

TABLE 136: FUNCTIONAL INTERFACE OF SCREEN-ARRIVAL-DBAMPLITUDE-
BY-EXISTING FOR FIRST MOTION

Argument Name Usage Type Description

dbamplitude-con input and output container dbamplitude objects

n/a returned value container dbamplitude objects
277

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

278

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The function compute-tf is a wrapper to the DFX/libtf function cal-tf, which

actually performs the time-frequency analysis.

The function compute-tf returns a dbtf container. If this container is empty a

warning message is printed. Otherwise, processing continues with the calling of

the local Scheme function screen-tf-by-existing-tf. The newly generated

dbtf datasets are compared with time-frequency records that already exist in the

database. A duplicate dbtf is determined by matching the orid and sta attributes.

Any duplicates found in the new datasets are removed from the container. This

subprocess follows the general form described in the “Screening Database Con-

tainers” on page 43. The screening function is implemented by the global Scheme

function screen-tf-by-existing-tf. This function is called by the Scheme

language code:

(screen-tf-by-existing-tf dbtf-con)

The function requires one argument, which is described in Table 138.

TABLE 137: FUNCTIONAL INTERFACE OF COMPUTE-TF

Argument Name Usage Type Description

wfdata-con input container wfdata objects

dborigin input GObj dborigin object

tf-dbarsoc-con input container dbarsoc objects for the arrival asso-
ciations with phases appropriate to
time-frequency analysis

tf-rec input GObj time-frequency estimation
processing recipe object

n/a returned value container dbtf objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
If all of the dbtf objects are removed in the screening process a message is printed.

Otherwise, the dbtf container is submitted to the database whereby the results are

written to the timefreq table. This latter process is implemented by the local

Scheme function submit-aux, as previously discussed.

Per fo rm Th i rd -moment -o f -
f requency P rocess ing [8 .3 .7]

This subprocess produces third-moment-of-frequency (tmf) estimates for the

detected signals. Only origins that fall within a specified distance range are pro-

cessed. The station-to-event distance criteria are set by the parameters evch-tmf-

min-delta and evch-tmf-max-delta. In addition, only origins with phases matching

one or more of those on the list of tmf phases is run through this subprocess. The

list of tmf phases is set by the parameter evch-tmf-phase-list. A tmf estimation pro-

cessing recipe from the initsite object is used to compute the tmf measures. This

processing recipe is actually a locally modified version of the spectral multiplicity

processing recipe. This subprocess is performed by the local Scheme function com-

pute-tmf. This function is called by the Scheme language code:

(set! dbtmf-con (compute-tmf wfdata-con tmf-dbarsoc-con

 smult-rec))

The function requires three arguments, which are described in Table 139.

TABLE 138: FUNCTIONAL INTERFACE OF SCREEN-TF-BY-EXISTING-TF

Argument Name Usage Type Description

dbtf-con input and output container dbtf objects

n/a returned value container dbtf objects
279

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

280

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The local Scheme function compute-tmf is a wrapper to the DFX/libfs function

make-tmf, which actually performs the tmf analysis. Prior to execution of com-

pute-tmf the smult-rec recipe object has its smult-min-frequency and smult-max-

frequency attributes set to tmf-specific frequencies.

The function compute-tmf returns a dbtmf container. After the tmf analysis is

completed, the source-multiplicity recipe object (symbol smult-rec) has its attributes

smult-min-frequency and smult-max-frequency reset to their original values. If the

dbtmf container proves to be empty a warning message is printed. Otherwise, pro-

cessing continues with the calling of the local Scheme function screen-tmf-by-

existing-tmf. The newly generated dbtmf datasets are compared with tmf

records that already exist in the database (in the thirdmom table). A duplicate dbtmf

is determined by matching the arid attribute. Any duplicates found in the new

datasets are removed from the container. This subprocess follows the general form

described in “Screening Database Containers” on page 43. The screening function

is implemented by the global Scheme function screen-tmf-by-existing-tmf.

This function is called by the Scheme language code:

(screen-tmf-by-existing-tmf dbtmf-con)

The function requires one argument, which is described in Table 140.

TABLE 139: FUNCTIONAL INTERFACE OF COMPUTE-TMF

Argument Name Usage Type Description

wfdata-con input container wfdata objects

tmf-dbarsoc-con input container dbarsoc objects for the arrival asso-
ciations with phases appropriate to
tmf analysis

smult-rec input GObj smult estimation processing recipe
class with parameters modified to
perform tmf calculations

n/a returned value container dbtmf objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
If all of the dbtmf objects are removed in the screening process a message is

printed. Otherwise, the dbtmf container is submitted to the database whereby the

results are written to the thirdmom table. This latter process is implemented by the

local Scheme function submit-aux, as previously discussed.

Per fo rm Shor t -pe r iod-ve r sus -
long -pe r iod P rocess ing [8 .3 .8]

This subprocess produces short-period-versus-long-period (splp) estimates for the

detected signals. Only origins that fall within a specified distance range are pro-

cessed. The station-to-event distance criteria are set by the parameters evch-splp-

min-delta and evch-splp-max-delta. In addition, the origin must be shallower than a

maximum depth criterion set by the symbol evch-splp-max-depth. Finally, the seis-

mic sensor must be a single-station 3-C instrument. A splp estimation processing

recipe from the initsite object is used to compute the measure. This subprocess is

implemented by the local Scheme function compute-splp. This function is called

by the Scheme language code:

(set! dbsplp-con (compute-splp wfdata-con dborigin

 dbarsoc-con splp-rec))

The function requires four arguments, which are described in Table 141.

TABLE 140: FUNCTIONAL INTERFACE OF SCREEN-TMF-BY-EXISTING-TMF

Argument Name Usage Type Description

dbtmf-con input and output container dbtmf objects

n/a returned value container GObjs of the dbtmf class
281

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

282

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The local Scheme function compute-splp is a wrapper to the DFX/libsplp func-

tion cal-splp, which actually performs the splp estimation processing.

The function compute-splp returns a dbsplp container. If this container proves to

be empty a warning message is printed. Otherwise, processing continues with the

calling of the local Scheme function screen-splp-by-existing-splp. The

newly generated dbsplp datasets are compared with splp records that already exist

in the database. A duplicate dbsplp is determined by matching the orid and sta

attributes. Any duplicates found in the new datasets are removed from the con-

tainer. This subprocess follows the general form described in “Screening Database

Containers” on page 43. This function is called by the Scheme language code:

(screen-splp-by-existing-splp dbsplp-con)

The function requires one argument, which is described in Table 142.

TABLE 141: FUNCTIONAL INTERFACE OF COMPUTE-SPLP

Argument Name Usage Type Description

wfdata-con input container wfdata objects

dborigin input GObj dborigin object

dbarsoc-con input container dbarsoc objects

splp-rec input container splp estimation processing
recipe objects

n/a returned value container dbsplp objects

TABLE 142: FUNCTIONAL INTERFACE OF SCREEN-SPLP-BY-EXISTING-SPLP

Argument Name Usage Type Description

dbsplp-con input and output container dbsplp objects

n/a returned value container dbsplp objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
If all of the dbsplp objects are removed in the screening process a message is

printed. Otherwise, the dbsplp container is submitted to the database whereby the

results are written to the splp table. This latter process is implemented by the local

Scheme function submit-aux, as previously discussed.

Per fo rm Source -mu l t ip l i c i t y
P rocess ing [8 .3 .9]

This subprocess produces estimates of source-multiplicity parameters, including

cepstral analysis measures, for the detected signals. Only origins that fall within a

specified distance range are processed. The station-to-event distance criteria are

set by the parameters evch-smult-min-delta and evch-smult-max-delta. In addition,

the origin must be shallower than a maximum depth criterion set by the symbol

evch-smult-max-depth. A source-multiplicity estimation processing recipe from the

initsite object is used to compute these measures. This subprocess is performed by

the DFX/libfs function make-smult, which actually performs the source multiplic-

ity analysis. This function is called by the Scheme language code:

(set! smult (make-smult wfdata-con dbarrival-con smult-rec

 orid))

The function requires four arguments, which are described in Table 143.

TABLE 143: FUNCTIONAL INTERFACE OF MAKE-SMULT

Argument Name Usage Type Description

wfdata-con input container wfdata objects

dbarrival-con input container dbarrival objects

smult-rec input GObj smult estimation pro-
cessing recipe object

orid input integer unique origin identifica-
tion number

n/a returned value GObj smult object
283

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

284

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This function, make-smult, returns an smult object. If this object proves to be null

a warning message is printed. Otherwise, processing continues with the extraction

of a dbceppks container from the smult object. Then the local Scheme function

screen-ceppks-by-existing-ceppks is called to compare the newly gener-

ated dbceppks datasets with the ceppks records that already exist in the database.

A duplicate dbceppks is determined by matching the orid and sta attributes. Any

duplicates found in the new datasets are removed from the container. This subpro-

cess follows the general form described in “Screening Database Containers” on

page 43. This function is called by the Scheme language code:

(screen-ceppks-by-existing-ceppks dbceppks-con)

The function requires one argument, which is described in Table 144.

If all of the dbceppks objects are removed in the screening process a message is

printed. Otherwise, the dbceppks container is submitted to the database whereby

the results are written to the ceppks table. This latter process is implemented by the

local Scheme function submit-aux, as previously discussed.

Processing continues with the extraction of a dbspvar container from the smult

object. The local Scheme function screen-spvar-by-existing-spvar is called

to compare the newly generated dbspvar datasets with the spvar records that

already exist in the database. A duplicate dbspvar is determined by matching the

arid attribute. Any duplicates found in the new datasets are removed from the con-

tainer. This subprocess follows the conventions described in “Screening Database

Containers” on page 43. This function is called by the Scheme language code:

(screen-spvar-by-existing-spvar dbspvar-con)

TABLE 144: FUNCTIONAL INTERFACE OF SCREEN-CEPPKS-BY-EXISTING-
CEPPKS

Argument Name Usage Type Description

dbceppks-con input and output container ceppks objects

n/a returned value container ceppks objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The function requires one argument, which is described in Table 145.

If all of the dbspvar objects are removed in the screening process a message is

printed. Otherwise, the dbspvar container is submitted to the database whereby

the results are written to the spvar table. This latter process is implemented by the

local Scheme function submit-aux, as previously discussed.

Per fo rm Complex i t y P rocess ing [8 .3 .10]

This subprocess produces estimates of complexity parameters for the detected sig-

nals. Only origins that fall within a specified distance range are processed. The sta-

tion-to-event distance criteria are set by parameters evch-complexity-min-delta and

evch-complexity-max-delta. In addition, the phase must be found in the list evch-

complexity-phase-list. Furthermore, the phase must not match any of the PcP

phases in the list evch-PcP-list if the station-event-distance lies in the distance

interval defined by evch-PcP-min-delta and evch-PcP-max-delta. Finally, there must

be one or more beam recipes whose beam-name values are found in the list evch-

complexity-beamrec. A complexity estimation processing recipe from the initsite

object is used to compute the these measures. This subprocess is performed by the

local Scheme function compute-complexity. This function is called by the

Scheme language code:

(set! dbcomplexity-con (compute-complexity wfdata-con

 complexity-dbarsoc-con complexity-beamrec dborigin

 dbsite complexity-rec))

The function requires six arguments, which are described in Table 146.

TABLE 145: FUNCTIONAL INTERFACE OF SCREEN-SPVAR-BY-EXISTING-SPVAR

Argument Name Usage Type Description

dbspvar-con input and output container spvar objects

n/a returned value container spvar objects
285

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

286

▼

Chapter 4:

Seismic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The local Scheme function compute-complexity is a wrapper to the DFX/lib-

complexity function cal-complexity, which actually performs the complexity

analysis.

This function, compute-complexity, returns a dbcomplexity container. If this

container proves to be empty a warning message is printed. Otherwise, processing

continues with the calling of the local Scheme function screen-complexity-

by-existing-complexity. The newly generated dbcomplexity datasets are

compared with complexity records that already exist in the database. A duplicate

dbcomplexity is determined by matching the orid, sta, and phase attributes. Any

duplicates found in the new datasets are removed from the container. This subpro-

cess follows the general form described in “Screening Database Containers” on

page 43. This function is called by the Scheme language code:

(screen-complexity-by-existing-complexity

 dbcomplexity-con)

TABLE 146: FUNCTIONAL INTERFACE OF COMPUTE-COMPLEXITY

Argument Name Usage Type Description

wfdata-con input container wfdata objects

complexity-dbarsoc-con input container dbarsoc objects for the
arrival associations
appropriate to complex-
ity analysis

complexity-beamrec input GObj beam recipe object for
the arrival associations
appropriate to complex-
ity analysis

dborigin input GObj dborigin object

dbsite input GObj dbsite object

complexity-rec input GObj complexity estimation
processing recipe object

n/a returned value container dbcomplexity objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Seismic Process ing
The function requires one argument, which is described in Table 147.

If all of the dbcomplexity objects are removed in the screening process a message is

printed. Otherwise, the dbcomplexity container is submitted to the database

whereby the results are written to the complexity table. This latter process is imple-

mented by the local Scheme function submit-aux, as previously discussed.

Following the completion of all attribute computations, this function, process-

origin-for-initsite, invokes the global Scheme function commit-db to

commit all submissions to the database in the cases where the calculations were

successful. In addition, the global Scheme function gc-wfdata-con is called to

clear any stale memory pointers associated with waveform sets.

TABLE 147: FUNCTIONAL INTERFACE OF SCREEN-COMPLEXITY-BY-EXISTING-
COMPLEXITY

Argument Name Usage Type Description

dbcomplexity-con input and output container dbcomplexity objects

n/a returned value container dbcomplexity objects
287

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 5: Hydroacous t i c
P rocess ing

This chapter describes the detailed design of DFX hydroacoustic processing and

includes the following applications:

■ Automatic Hydroacoustic Detection [9]

■ Interactive Hydroacoustic Recall [10]

■ Automatic Hydroacoustic Event Characterization [11]
e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1 289

S o f t w a r e
I D C D O C U M E N T A T I O N

290
Chapter 5: Hydroacous t i c
P rocess ing

AUTOMATIC HYDROACOUST IC
DETECT ION [9]

Automatic Hydroacoustic Detection (HydroDet) is a DFX Scheme application that

detects transient hydroacoustic signals and measures features in the proximity of

the detection. The source code resides in the file DFX-hydro-detection.scm.

HydroDet is typically called in the automatic pipeline processing, but it can also be

run offline. HydroDet is usually called by specifying the station, start-time, end-

time, and the DFX-detection.par file (the same one used in seismic processing)

on the command line. HydroDet makes detections using a STA/LTA type detector.

For each detection, it computes a series of features specific to hydroacoustic signal

processing. The results of HydroDet are written to the arrival, detection, and

hydro_features tables.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description includes the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes

■ Detailed Description of Make Detections [9.3]

■ Detailed Description of Measure Hydroacoustic Detection Features [9.6]
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
Genera l Desc r ip t ion

HydroDet was designed to automatically detect arrivals at hydroacoustic stations

and measure properties relevant to hydroacoustics. The detections are based on a

running STA/LTA type detector. HydroDet attempts to measure properties of each

detection in a suite of frequency bands. However, properties are only measured in

frequency bands where the snr is greater than a preset threshold (separate from

the detection threshold). The measurements include several arrival-time measures,

energy distributions, and cepstral parameters. One of the time measurements is

used as the overall time of arrival (the probability-weighted time in the highest-snr

frequency band).

Arch i tec tu re

HydroDet consists of seven sequential processes (see Figure 34). The first process

initializes site information by creating an initsite object. Then waveforms are

acquired for the given station and time interval. Detections are made using the

same STA/LTA detector used in seismic processing but with different window

lengths. The detection times are then refined using an auto-regressive technique.

Any redundant detections are removed in the Screen Detections process. The

hydroacoustic features are estimated for the remaining detections, and the results

are written to the database.
291

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

292

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 34. ARCHITECTURE OF HYDRODET

I nput /Output

HydroDet is called for one station and time interval at a time. The station code,

start-time, and end-time parameters are generally specified on the command line.

The rest of the parameters are set or referenced in the DFX-detection.par file.

Table 148 lists the input CVAR datastore parameters used in the Scheme code. This

application loads the DFX-site-detection.par file, which in turn loads the

necessary recipes (not listed here).

Exit

affiliation, site,
sitechan,
sensor,
instrument

wfdisc

arrival,
detection,
hydro_features

-detection-initsite

9.1

create-hydro

Sites
Initialize

-detections

9.3

make-hydro

Detections
Make

9.4

Onset Times
Revise

-by-time

9.5

screen-detections

by Time
Screen Detections

-features

9.6

measure-hydro

Hydroacoustic
Measure

Detection Features

-detections

9.7

screen-hydro

and
Screen

Submit Results
to Database

revise-hydro
-detection
-estimates

Db

DbDb

9.2

Waveforms
Acquire

read-hydro
-detection
-waveforms

waveformsD
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
TABLE 148: INPUT PARAMETERS FOR AUTOMATIC HYDROACOUSTIC

DETECTION PROCESSING

Par Name Source Default Value Description

sta command
line

<none> station code

start-time command
line

<none> start-time of the pro-
cessing interval

end-time command
line

<none> end-time of the pro-
cessing interval

database-account par file <none> database access char-
acter-string

out-arrival-table par file arrival output table contain-
ing arrival information
generated by this
application

out-detection-table par file detection output table contain-
ing signal detection
information generated
by this application

out-hydro_features-table par file hydro_features hydro_features table

in-wfdisc-table par file wfdisc input table containing
waveform file header
and descriptive infor-
mation

site-table par file site table containing site-
location information

sitechan-table par file sitechan table containing sta-
tion-channel informa-
tion

sensor-table par file sensor table containing spe-
cific calibration infor-
mation for physical
channels
293

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

294

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
instrument-table par file instrument table containing
generic (default) cali-
bration information
about a station

affiliation-table par file affiliation table containing sta-
tion and network affili-
ations

wfdisc-extension-len par file 86400.0 maximum time dura-
tion of “.w” files in
which binary format
waveform time series
are stored on the UNIX
filesystem

NetType par file <none> network type, as in:

“ss”, ”array”,
”larray”

StaType par file <none> station type, as in:

“1c”,”3c”

WaveType par file ÒÒ wave type

(ÒÒ, ”hydro-”,
”infra-”)

perform-qcstats par file 0

false

flag for generating and
writing quality-control
statistics: 0 means do
not collect data quality
statistics

qcstats-scheme-file par file <none> filename containing
the QCStats source
code

detection-site-recipe-file par file <none> filename of the site-
specific detection reci-
pes

TABLE 148: INPUT PARAMETERS FOR AUTOMATIC HYDROACOUSTIC

DETECTION PROCESSING (CONTINUED)

Par Name Source Default Value Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
Table 149 lists the output of HydroDet. HydroDet writes the results to the database,

but first checks the database for detections that already exist by comparing arrival

times. Those arrivals that do not already exist are written to the detection, arrival

and hydro_features tables. Table 238 on page 449 lists the specific attributes whose

values are written by HydroDet for each of these database tables.

Processes

The following processes shown in Figure 34 on page 292 are described in this sec-

tion:

■ Initialize Sites [9.1]

■ Acquire Waveforms [9.2]

■ Make Detections [9.3]

■ Revise Onset Times [9.4]

■ Screen Detections by Time [9.5]

■ Measure Hydroacoustic Detection Features [9.6]

■ Screen and Submit Results to Database [9.7]

I n i t i a l i ze S i t e s [9 .1]

This process initializes site-specific information via the local Scheme function cre-

ate-hydro-detection-initsite. This function is called by the Scheme code:

(set! initsite (create-hydro-detection-initsite sta))

TABLE 149: DATA PRODUCED BY AUTOMATIC HYDROACOUSTIC
DETECTION PROCESSING

Name Category Description

returned value application exit status indicates success or failure

arrival database table arrival attributes

detection database table detection attributes

hydro_features database table hydroacoustic detection features
295

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

296

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This local function follows the general site initialization model described in “Initial-

izing Sites” on page 46. The function creates an initsite object with site recipes

from the CVAR datastore and a wfdata container for the specified station and time

interval.

The function has one input argument, which is described in Table 150. This argu-

ment is a character-string that contains the station code retrieved from the CVAR

datastore prior to calling the function. The start-time and end-time for the interval

are extracted from the CVAR datastore within the function along with the neces-

sary table names and recipes.

The contents of the initsite object produced by the function are indicated in

Table 8 on page 50.

Acqu i re Wave fo rms [9 .2]

This process acquires waveforms by the standard method used in DFX (see“Read-

ing Waveforms” on page 58). It uses the local Scheme function read-hydro-

detection-waveforms, which is called by the Scheme code:

(set! wfdata-con (read-hydro-detection-waveforms

 initsite))

The function has one argument, which is described in Table 151. The function

takes an initsite object as input and produces a wfdata container. Two additional

parameters that define the actual start-time and end-time of the data are added to

the initsite object.

TABLE 150: FUNCTIONAL INTERFACE OF CREATE-HYDRO-DETECTION-
INITSITE

Argument Name Usage Type Description

sta input character-string station code

n/a returned value GObj initsite object
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
The function performs the following steps:

1. Extract parameters from the CVAR datastore such as the user-requested

start-time and end-time and the input wfdisc table name.

2. Extract recipes from the initsite object.

3. Determine the time interval.

4. Make a copy of the wfdata container from the initsite object.

5. Make a list of all station/channel pairs.

6. Create a wfmem container from the wfdisc table.

7. Read the waveforms.

8. Set the actual start-time and end-time in the initsite object.

9. Check the quality of the waveforms.

10. Return the wfdata container. Although the wfmem container is not

explicitly returned by the function, its contents are accessible by the

wfdata container.

Make Detec t ions [9 .3]

This process makes detections via the local Scheme function make-hydro-

detections. This function is called by the Scheme code:

(set! det-con (make-hydro-detections wfdata-con initsite))

TABLE 151: FUNCTIONAL INTERFACE OF READ-HYDRO-DETECTION-
WAVEFORMS

Argument Name Usage Type Description

initsite input and output GObj site-specific infor-
mation

n/a returned value container wfdata objects
297

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

298

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The function computes a running STA/LTA ratio over the filter bands specified in

the beam recipes. A trigger object is created when the STA/LTA ratio exceeds a

threshold (also specified in the beam recipe). These trigger objects are used to form

detection objects (following rules specified by the detection recipe) that are then

returned in a container.

The function has two arguments, which are described in Table 152. The function

takes a wfdata container and an initsite object as input arguments and produces a

detection container. The detection objects contain information indicating the trig-

ger time, the best-snr beam, and an estimation of the time uncertainty.

For more information on this function see “Detailed Description of Make Detec-

tions [9.3]” on page 304.

Rev i se Onse t T imes [9 .4]

This process uses an auto-regressive algorithm (see [IDC5.2.1]) to refine the onset

times for each detection object in the container returned by the function Make

Detections. The process uses the local Scheme function revise-hydro-detec-

tion-estimates, which is called by the Scheme code:

(revise-hydro-detection-estimates wfdata-con initsite

 det-con)

The function has three arguments, which are described in Table 153. It takes the

wfdata container, the initsite object, and the detection object as input arguments.

The detection times are updated in the detection objects contained in det-con.

TABLE 152: FUNCTIONAL INTERFACE OF MAKE-HYDRO-DETECTIONS

Argument Name Usage Type Description

wfdata-con input container wfdata objects

initsite input GObj site-specific infor-
mation

n/a returned value container detection objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
The function performs the following steps:

1. Extract the onset recipe from the initsite object.

2. Enter a loop over the objects in the detection container.

3. Call the DFX/libonset function revise-onset that performs the actual

onset time revision.

4. Keep a list of detections that returned an error from revise-onset.

5. Exit the loop over the detection container.

6. Remove any detections that produced an error. This function returns a

detection container.

Sc reen Detec t ions by T ime [9 .5]

This process screens redundant detections from the previous processes. It uses a

global Scheme function, which is called by the Scheme code:

(screen-detections-by-time det-con

 det-min-detection-interval)

The function has two arguments, which are described in Table 154. It takes the

detection container and the minimum allowed time interval as input. It then

removes detections that are deemed as duplicates from the container. Detections

are considered duplicated if they are within the minimum allowed time window of

TABLE 153: FUNCTIONAL INTERFACE OF REVISE-HYDRO-DETECTION-
ESTIMATES

Argument Name Usage Type Description

wfdata-con input container wfdata objects

initsite input GObj site-specific infor-
mation

det-con input and output container detection objects

n/a return value container detection objects
299

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

300

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
another detection. The time interval is specified in the CVAR datastore parameter

det-min-detection-interval. On return, the input detection container is modified by

the redundant detections being removed. The function also produces the screened

detection container as the returned value. For more information on screening see

“Internal Screening of Containers” on page 74.

Measure Hydroacous t i c
Detec t ion Fea tu res [9 .6]

This process estimates the hydroacoustic features for each detection over a set of

filter bands. It uses the local Scheme function measure-hydro-detection-

features, which is called by the Scheme code:

(set! dbhydro-con (measure-hydro-detection-features

 wfdata-con initsite det-con))

This function in turn calls the DFX/libhydro function measure-hydro. The fea-

tures are measured for a set of filter bands specified by the filter-recipe table in the

station-specific hydroacoustic par files. The detection attributes time, deltim, and

snr are set using features from the filter band with the highest snr. The attributes

time and deltim are set to the features prob_weight_time and sigma_time, respec-

tively.

The function measure-hydro has three arguments, which are described in Table

155. The function takes the wfdata container, the initsite object, and the detection

container as input and produces a dbhydro container. The function also updates

TABLE 154: FUNCTIONAL INTERFACE OF SCREEN-DETECTIONS-BY-TIME

Argument Name Usage Type Description

det-con input and output container detection objects

det-min-detection
-interval

input real minimum time allowed
between detections

n/a return value container screened detection
objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
the time, deltim, snr and arid values in all of the objects in the detection container.

The dbhydro container has a dbhydro object for each unique detection/filter-band

pair. A dbhydro object corresponds to the hydro_features table.

For more information about this function see “Detailed Description of Measure

Hydroacoustic Detection Features [9.6]” on page 307.

Sc reen and Submi t Resu l t s to
Database [9 .7]

This process passes the detections through a final screening process to ensure that

the new detections are not duplicating detections already in the database. The pro-

cess uses a local Scheme function, which is called by the Scheme language code:

(screen-hydro-detections initsite det-con dbhydro-con)

This function has three arguments, which are described in Table 156. It follows the

conventions described in “Screening Database Containers” on page 43. The func-

tion takes the initsite object, the detection container, and the dbhydro container as

input. Any detections that are found to already exist in the database are removed

from the detection and dbhydro containers.

TABLE 155: FUNCTIONAL INTERFACE OF MEASURE-HYDRO-DETECTION-
FEATURES

Argument Name Usage Type Description

wfdata-con input container wfdata objects

initsite input GObj site-specific information

det-con input and output container detection objects

n/a returned value container dbhydro objects
301

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

302

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The function performs the following steps:

1. Extract the parameters, such as det-min-detection-interval in the detec-

tion recipe, from the initsite object.

2. Screen detections that are too close in time (see “Screen Detections by

Time [9.5]” on page 299).

3. Screen detections by existing detections.

4. Remove dbhydro objects whose corresponding detection was deleted in

the previous step from the dbhydro container. This function has to inter-

nally screen the detections again because the arrival times were revised

when the hydroacoustic features were estimated.

The remaining detections are written to the database by a local DFX Scheme func-

tion. This function is called by the Scheme language code:

(submit-db-hydro-results det-con dbhydro-con)

The function has two arguments, which are described in Table 157. It takes the

detection and dbhydro containers as input. It writes the appropriate attributes for

each detection to the arrival and detection tables, and it writes the corresponding

features to the hydro_features table in the database.

TABLE 156: FUNCTIONAL INTERFACE OF SCREEN-HYDRO-DETECTIONS

Argument Name Usage Type Description

initsite input GObj site-specific information

det-con input and output container detection objects

dbhydro-con input and output container dbhydro objects

n/a returned value container dbhydro objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
The function performs the following steps:

1. Extract the arrival, detection, and hydro_features table names from the

CVAR datastore.

2. Enter the loop over detections.

3. Create a dbarrival object for the current detection via create-dbar-

rival-from-detection.

4. Submit the dbarrival object to the database via submit-object-db.

5. Create a dbdetection object for the current detection via create-dbde-

tection-from-detection.

6. Submit the dbdetection object to the database.

7. Create a dbhydro container for a single detection from the input dbhydro

container.

8. Submit the newly created dbhydro container to the database via sub-

mit-container-db.

9. If no errors occurred, save database additions via commit-db; otherwise,

remove the additions via rollback-db.

10. Leave the loop over detections, and return the input detections con-

tainer.

TABLE 157: FUNCTIONAL INTERFACE OF SUBMIT-DB-HYDRO-RESULTS

Argument Name Usage Type Description

det-con input container detection objects

dbhydro-con input container dbhydro objects

n/a returned value container detection objects
303

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

304

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Deta i l ed Desc r ip t ion o f Make
Detec t ions [9 .3]

Detections are determined using an STA/LTA type detector over a variety of fre-

quency bands. The architecture of the function make-hydro-detections is

shown in Figure 35. The function extracts various parameters including the beam

recipe. The beam recipe specifies a set of filter bands. The function loops over each

filter band and applies it to the waveforms. The STA and LTA time series are com-

puted. Triggers are created when the STA/LTA ratio exceeds a threshold, specified

independently for each filter in the beam recipe. After the filters have been

exhausted, the triggers are used to find detections. Often there are a set of triggers

over different frequency bands but nearby in time. These are coalesced into a sin-

gle detection. The detections are returned in a detection container.

FIGURE 35. ARCHITECTURE OF MAKE DETECTIONS

over
Loop

filters

initsite object
wfdata container

next

no

filter

more

Return

-triggers

9.3.4

find

Generate Triggers

9.3.1

Parameters
Extract

-from-data

9.3.2

make-beam

Data
Filter

-snr

9.3.3

compute

Compute SNR

-detections

9.3.5

find

Detections
Generate

M

 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
The following subprocesses shown in Figure 35 are described in this section:

■ Extract Parameters [9.3.1]

■ Filter Data [9.3.2]

■ Compute SNR [9.3.3]

■ Generate Triggers [9.3.4]

■ Generate Detections [9.3.5]

Ex t rac t Pa ramete r s [9 .3 .1]

This subprocess extracts recipes from the initsite container via inline Scheme code.

The function requires the beam and detection recipes as well as the start-time and

end-time of the interval. The beam recipe set is only a list of filters and thresholds,

because hydroacoustic processing is currently performed on single-sensor stations,

and beam steering information is not applicable.

F i l t e r Da ta [9 .3 .2]

This subprocess filters the waveforms according to the current beam recipe via the

global Scheme function make-beam-from-data. This function is called by the

Scheme code:

(set! beam (make-beam-from-data wfdata-con beamrec))

The function has two arguments, which are described in Table 158. It takes the

wfdata container and a beam recipe object as input and returns a beam object con-

taining the filtered waveforms. This function is a wrapper to the DFX/libbeam

function make-beam. For more information on filtering waveforms see [IDC5.2.1].
305

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

306

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Compute SNR [9 .3 .3]

This subprocess creates STA, LTA, and snr time series for the screened waveform. It

uses the DFX/libdetect function compute-snr, which is called by the Scheme lan-

guage code:

(compute-snr beam det-rec)

The function takes the screened data, which are stored in the beam object, and the

detection recipe object as input. The STA, LTA, and snr time series are returned in

the beam object. See “Generate STA and LTA [1.3.4]” on page 105 for more infor-

mation about this function. See [IDC5.2.1] for more information about the algo-

rithms used to compute STA and LTA time series.

Genera te Tr i gge r s [9 .3 .4]

This subprocess finds the times that the STA/LTA ratio rises above the threshold

specified in the beam recipe. It uses the DFX/libdetect function find-triggers,

which is called by the Scheme language code:

(find-triggers beam start-time end-time trig-con det-rec)

The function has five arguments, which are described in Table 159. It takes the

beam object, the start-time, the end-time, and the detection recipe as input. The

function finds the times corresponding to points in the screened waveforms that

exceed the thresholds defined in the detection recipe. The times are stored in the

returned trigger container.

TABLE 158: FUNCTIONAL INTERFACE OF MAKE-BEAM-FROM-DATA

Argument Name Usage Type Description

wfdata-con input container wfdata objects

beamrec input GObj beam recipe object that
describes filter parameters

n/a returned value GObj beam object containing
screened time-series
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
Genera te Detec t ions [9 .3 .5]

After the process has looped through the filter list, the triggers are passed to this

subprocess, which creates the actual detections. The subprocess uses the DFX/lib-

detect function find-detections, which is called by the Scheme language code:

(find-detections trig-con det-rec)

The triggers are processed and evaluated to form detections. This subprocess also

estimates the time uncertainty stored in the attribute deltim, but this value is

updated later in onset time revision. The detections are returned in a detection con-

tainer. For more information see “Evaluate Triggers and Generate Detections

[1.5.6]” on page 119.

Deta i l ed Desc r ip t ion o f Measu re
Hydroacous t i c Detec t ion Fea tu res [9 .6]

This process makes the actual measurements that are placed into the hydro_features

database table. The process is accomplished by the function measure-hydro-

detection-features. Figure 36 shows the architecture of this function. The

TABLE 159: FUNCTIONAL INTERFACE OF FIND-TRIGGERS

Argument Name Usage Type Description

beam input GObj beam object containing STA and
LTA time-series

start-time input real start-time of the processing
interval

end-time input real end-time of the processing inter-
val

trig-con output container trigger objects

det-rec input GObj detection recipe object contain-
ing trigger thresholds

n/a returned
value

container trigger objects
307

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

308

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
appropriate parameters and filter bands are extracted from the input containers.

The waveforms are corrected for the instrument response. The actual feature esti-

mation occurs within a nested pair of loops. The outer loop is over detections, and

the inner loop is over frequency bands. The hydroacoustic features are estimated

and inserted into a dbhydro object. The final arrival time is found after looping over

the filter bands.

FIGURE 36. ARCHITECTURE OF MEASURE HYDROACOUSTIC DETECTION
FEATURES

The following subprocesses shown in Figure 36 are described in this section:

■ Extract Parameters [9.6.1]

■ Correct Waveform for Instrument Response [9.6.2]

■ Estimate Hydroacoustic Features [9.6.3]

over
Loop

filter
bands

over
Loop

detections

Return

next

no

no

next
detection

more

more

filter

9.6.1

-hydro

9.6.3

measure

Hydroacoustic
Estimate

Features
-attributes

9.6.4

revise-hydro-det

Detection
Revise

Attributes

-correction

9.6.2

hydro-station

Waveform for
Correct

Instrument
Response

initsite object
wfdata container
detection objects

Parameters
Extract

M

 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
■ Revise Detection Attributes [9.6.4]

Ex t rac t Pa ramete r s [9 .6 .1]

This subprocess extracts and initializes needed parameters from the initsite object

and the CVAR datastore. The hydroacoustic recipe is retrieved from the initsite

object, and the dbhydro container is initialized by inline Scheme code. The hydroa-

coustic recipe contains parameters used in the DFX/libhydro function measure-

hydro. The filter list for the hydroacoustic features computations is extracted from

the filter-recipe parameter in the CVAR datastore by the local DFX Scheme func-

tion get-filter-list-from-cvar. This filter list is separate from the beam-rec-

ipe filters used to find the detections.

Cor rec t Wave fo rm fo r I n s t rument
Response [9 .6 .2]

This subprocess removes the instrument response from the waveforms by using an

inverse response filter if one exists for the station. The filter is a FIR filter that has

been designed to remove instrument effects over the pass band of interest (typi-

cally 2–80 Hz). The filter must already exist in a par file in the precond subdirec-

tory of the DFX configuration directory tree. The FIR filter coefficients are passed to

the function through the CVAR datastore. The filter is applied to the data by the

DFX/libhydro function hydro-station-correction. If the filter exists, the raw

waveforms in the wfdata container are replaced with the station-corrected data. If

the filter does not exist, the raw waveforms are left unchanged.

Es t imate Hydroacous t i c Fea tu res [9 .6 .3]

This subprocess estimates the hydroacoustic features for each detection. It uses the

DFX/libhydro function measure-hydro, which is called by the Scheme code:

(set! hydro (measure-hydro wfdata-con hydro-rec time))

The function has three arguments, which are described in Table 160. The only

parameter that the function needs from the current detection object is the time.

The hydroacoustic recipe contains two parameters, hydro-flo and hydro-fhi, that
309

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

310

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
define the bandpass filter. These parameters are set from the filter recipe in the

CVAR datastore prior to calling measure-hydro. The function returns a generic

object of type hydro that contains the various feature estimates. For more informa-

tion about hydroacoustic features see [Lan97g].

The hydro object returned from measure-hydro creates a dbhydro object suitable

for insertion into the hydro_features table. This is accomplished by the global

Scheme function create-dbhydro-from-det. The arid attribute in the dbhydro

object is taken from the arid in the detection object. A given detection has a

dbhydro object for each filter band. These objects are placed in a container that is

returned by measure-hydro-detection-features.

Rev i se Detec t ion At t r ibu tes [9 .6 .4]

This subprocess uses the estimated hydroacoustic features to determine the final

time of the detection object as well as the detection’s overall snr. It uses the local

Scheme function revise-hydro-det-attributes, which is called by the

Scheme code:

(revise-hydro-det-attributes hydro-rec det

 sub-dbhydro-con)

The function has three arguments, which are described in Table 161. The function

loops over the hydro objects for each band to find the greatest snr value. The snr is

defined as follows:

TABLE 160: FUNCTIONAL INTERFACE OF MEASURE-HYDRO

Argument Name Usage Type Description

wfdata-con input container wfdata objects

hydro-rec input GObj hydro recipe object

time input real detection time

n/a returned value GObj hydro object
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
where both total energy and average noise have been converted from decibels to

physical units in power. The snr attribute in the detection object is set to this maxi-

mum snr. The time attribute in the detection object is set to the prob_weight_time

(probability-weighted time, one of the hydroacoustic features) of the frequency

band with the maximum snr. The deltim attribute in the detection object is set to

the sigma_time (time uncertainty estimate, one of the hydroacoustic features) in

the same frequency band. After setting these values the function returns a detec-

tion object with revised parameter values.

TABLE 161: FUNCTIONAL INTERFACE OF REVISE-HYDRO-DET-ATTRIBUTES

Argument Name Usage Type Description

hydro-rec input GObj hydro recipe object

det input and output GObj detection object

sub-dbhydro-con input container dbhydro objects

n/a returned value GObj detection object

snr total energy
duration average noise×
--=
311

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

312

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
INTERACT IVE HYDROACOUST IC
RECALL [10]

Interactive Hydroacoustic Recall (IntHydroRcl) is a DFX Scheme application that

makes hydroacoustic feature measurements on analyst-added or modified arrivals.

These are the same features computed by the Automatic Hydroacoustic Detection

application. The application source code for IntHydroRcl resides in the file DFX-

hydro-recall.scm. IntHydroRcl is typically called from within ARS, which sends

an IPC message containing the names of temporary database tables that hold the

arrivals to be reprocessed. IntHydroRcl computes the hydroacoustic features for

each arrival using the onset and termination times and the filter chosen by the ana-

lyst. IntHydroRcl writes the new measurements to the temporary hydro_features

table before exiting.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description includes the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes

■ Detailed Description of Perform Recall Signal Processing [10.4]

Genera l Desc r ip t ion

IntHydroRcl was designed so that new hydroacoustic features could be measured

after the analyst modifies the onset and termination times of a hydroacoustic signal

(or adds a new arrival). The measurements include arrival times, energy distribu-

tions, and cepstral parameters. The estimation process is similar to that in Auto-

matic Hydroacoustic Detection [9] (see page 290) except it does not attempt to

calculate an onset and termination time because these are supplied by the analyst
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
through ARS. Another difference is that IntHydroRcl computes features for only

one analyst-chosen frequency band. The time, deltim, and auth attributes are

updated in the arrival table.

Arch i tec tu re

IntHydroRcl consists of four processes (see Figure 37). The IntHydroRcl Scheme

code was designed as a pair of nested loops. The outer loop runs over stations, and

the inner loop runs over arrivals. IntHydroRcl first retrieves the current arrivals and

hydroacoustic features from the temporary tables created in ARS. It then forms a

list of all stations covered by the arrivals. This list is used for the outer loop. An

initsite object is created for each station and is used later to read waveforms and to

provide parameters for feature measurements. The process inside the inner loop

estimates the hydroacoustic features and writes the results to the database.

I nput /Output

IntHydroRcl receives input from and sends output to ARS through the contents of

temporary database tables. The arrival, detection, and hydro_features table names

are given as command line parameters. The rest of the parameters are set or refer-

enced in the DFX-hydro-recall.par file in the DFX par directory. The CVAR

datastore parameters used by IntHydroRcl are listed in Table 162. The application

loads the DFX-site-detection.par file, which in turn loads the necessary reci-

pes (not listed here).
313

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

 Ju
n

e
 2

0
0

1
 ID

C
-7

.1
.1

 D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 5

:

H
y

d
ro

a
c
o

u
s
tic

 P
ro

c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

314

l
ecall

next
arrival

no
morearrival,

Db hydro_features

-initsite

10.3

create-hydro-recall

Site
Initialize

over
Loop

arrivals

affiliation, site,
Db sitechan, sensor,

instrument

ignal
m

ing
FIGURE 37. ARCHITECTURE OF INTHYDRORCL

wfdisc, lastid,

Db
arrival,
detection,

-arriva

10.4

process-r

hydro_features

over
Loop

origins

Exit

no
more

next
station

-container

10.1

query-for-dbarrival

Database for
Query

Arrivals

-from-arrivals

10.2

get-station-list

Station
Extract

List

Recall S
Perfor

Process

waveformsD

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
TABLE 162: INPUT PARAMETERS FOR INTERACTIVE HYDROACOUSTIC RECALL
PROCESSING

Par Name Source Default Value Description

database-account command
line

<none> database access character-
string

arrival-table command
line

<none> arrival table

detection-table command
line

<none> detection table

hydro_features-table command
line

<none> hydro_features table

in-wfdisc-table par file wfdisc input table containing wave-
form file header and descrip-
tive information

site-table par file site table containing site-location
information

sitechan-table par file sitechan table containing station-
channel information

sensor-table par file sensor table containing specific cali-
bration information for physi-
cal channels

instrument-table par file instrument table containing generic
(default) calibration informa-
tion about a station

affiliation-table par file affiliation table containing station and
network affiliations

wfdisc-extension-len par file 86400.0 maximum time duration of
“.w” files in which binary for-
mat waveform time series are
stored on the UNIX filesystem

NetType par file <none> network type, as in:
“ss”, ”array”, ”larray”
315

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

316

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The results of IntHydroRcl are listed in Table 163. IntHydroRcl updates all the

attributes in hydro_features except the onset and termination times and the filter

parameters. It also updates the time and deltim attributes in the arrival and detec-

tion tables. Table 239 on page 450 lists the specific attributes whose values are

written by IntHydroRcl for each of these database tables.

StaType par file <none> station type, as in:
“1c”, ”3c”

WaveType par file ÒÒ wave type
(““, ”hydro-”, ”infra-”)

recall-auth par file <none> character-string identifying
process

TABLE 163: DATA PRODUCED BY INTERACTIVE HYDROACOUSTIC RECALL
PROCESSING

Name Category Description

returned value application exit status indicates success or failure

arrival database table updates time, deltim, and auth
attributes

detection database table updates time and deltim
attributes

hydro_features database table updates all attributes except
onset_time, termination_time,
and the filter parameters

TABLE 162: INPUT PARAMETERS FOR INTERACTIVE HYDROACOUSTIC RECALL
PROCESSING (CONTINUED)

Par Name Source Default Value Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
Processes

The following processes shown in Figure 37 on page 314 are described in this sec-

tion:

■ Query Database for Arrivals [10.1]

■ Extract Station List [10.2]

■ Initialize Site [10.3]

■ Perform Recall Signal Processing [10.4]

Query Database fo r A r r i va l s [10 .1]

This process extracts the arrival information from the database and places it into a

dbarrival container. It uses the local DFX Scheme function query-for-dbar-

rival-container, which has no input parameters. Instead it obtains the arrival

table name directly from the CVAR datastore. The arrival table is assumed to con-

tain only the arrivals of interest; therefore, IntHydroRcl retrieves the entire arrival

table. For information about how database queries are implemented see “Query-

ing the Database” on page 41.

Ex t rac t S ta t ion L i s t [10 .2]

This process creates a list of unique station names in the arrival table via the local

Scheme function get-station-list-from-arrivals. The outer loop of

IntHydroRcl (see Figure 37 on page 314) runs over each station in this list.

I n i t i a l i ze S i t e [10 .3]

This process initializes the site via the local Scheme function create-hydro-

recall-initsite. The function is called by the Scheme code:

(set! initsite (create-hydro-recall-initsite sta

 sta-dbarrival-con))
317

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

318

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This is a special case of the site initialization function (see “Initializing Sites” on

page 46). The function creates an initsite object with site-specific recipes that are

used later to get waveforms and estimate hydroacoustic features. The dbarrival

container that is passed into the function is used to determine the data time inter-

val used to create the wfdata container.

The function create-hydro-recall-initsite has two arguments, which are

described in Table 164. It takes sta and sta-dbarrival-con as input parameters. The

function is called for a single station specified by the station code sta (the current

station of the outer loop). The arrivals for this station have been extracted and

placed in their own container, sta-dbarrival-con.

The Scheme function returns an initsite object. The contents of the initsite object

are indicated in Table 8 on page 50. The initsite container holds all of the informa-

tion needed to acquire and process the data for this particular station.

Per fo rm Reca l l S i gna l P rocess ing [10 .4]

This process performs the actual feature estimation for each arrival. It uses the local

Scheme function process-recall-arrival, which is called by the Scheme

code:

(process-recall-arrival initsite dbarrival dbhydro)

TABLE 164: FUNCTIONAL INTERFACE OF CREATE-HYDRO-RECALL-INITSITE

Argument Name Usage Type Description

sta input character-string station code

sta-dbarrival-con input container dbarrival objects for
this station

n/a returned value GObj site-specific informa-
tion
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
The function is executed for each arrival belonging to the current station. The

function’s tasks include reading the waveforms, correcting the data for instrument

response, and estimating the hydroacoustic features. It also writes the results to

the appropriate tables in the database.

The function has three arguments, which are described in Table 165. There are

three input objects: initsite, dbarrival, and dbhydro. The dbarrival object contains

the current arrival information. The dbhydro object contains the analyst-specified

onset and termination times and the filter parameters.

The function process-recall-arrival writes the new hydroacoustic features

to the database and updates the arrival and detection times. This function is

described in “Detailed Description of Perform Recall Signal Processing [10.4].”

Deta i l ed Desc r ip t ion o f Pe r fo rm
Reca l l S i gna l P rocess ing [10 .4]

The recall processing in the function process-recall-arrival occurs as four

subprocesses (see Figure 38). First, a detection object is created from the dbarrival

object. Then this object is used to read the waveforms. The instrument response, if

available, is removed from the waveforms. The final subprocesses estimate the

hydroacoustic features and write the results to the database.

TABLE 165: FUNCTIONAL INTERFACE OF PROCESS-RECALL-ARRIVAL

Argument Name Usage Type Description

initsite input GObj site-specific information

dbarrival input GObj dbarrival object

dbhydro input GObj dbhydro object

n/a returned value logical scalar indicates success (t)
or failure (nil)
319

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

320

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 38. ARCHITECTURE OF PERFORM RECALL SIGNAL PROCESSING

The following subprocesses shown in Figure 38 are described in this section:

■ Generate Detection Object [10.4.1]

■ Acquire Waveforms [10.4.2]

■ Correct Waveform for Instrument Response [10.4.3]

■ Estimate Hydroacoustic Features [10.4.4]

Genera te Detec t ion Ob jec t [10 .4 .1]

This subprocess creates a detection object from the dbarrival object via the global

Scheme function create-recall-det-from-dbarrival. The relevant infor-

mation is extracted from the dbarrival object, converted to new units if necessary,

and placed into a detection object, which is returned by the function.

-recall-features

10.4.4

measure-hydro

Hydroacoustic
Estimate

Features

-for-recall

10.4.2

read-waveforms

Waveforms
Acquire

-from-dbarrival

10.4.1

create-recall-det

Detection
Generate

Object

-correction

10.4.3

hydro-station

Waveform
Correct

for
Instrument
Response

Return

initsite object
dbarrival object
dbhydro object

lastid, arrival,
detection,
hydro_featureswfdisc

M
Db

Db
waveformsD
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
Acqu i re Wave fo rms [10 .4 .2]

This subprocess acquires waveforms via a local Scheme function read-wave-

forms-for-recall. See “Reading Waveforms” on page 58 for a general

description of waveform acquisition. The function determines an appropriate time

interval by using the detection recipe parameters and the arrival time to compute

data start-time and end-times. This creates a minimum time interval that still pro-

vides mitigation of edge effects from filtering and other processing. The wave-

forms are returned in a wfdata container.

Cor rec t Wave fo rm fo r I n s t rument
Response [10 .4 .3]

This subprocess removes the instrument response, if available, from the waveforms

by using an inverse response filter if one exists for the station. The filter is a FIR fil-

ter that has been designed to remove instrument effects over the pass band of

interest (typically 2–80 Hz). The filter must already exist in a par file in the pre-

cond subdirectory. The FIR filter is stored in the CVAR datastore. The filter is

applied to the data by the DFX/libhydro function hydro-station-correction.

If the filter exists, the raw waveforms in the wfdata container are replaced with the

corrected data. If the filter does not exist, the raw waveforms are left unchanged.

Es t imate Hydroacous t i c Fea tu res [10 .4 .4]

This subprocess estimates the new features for the current arrival. It uses the local

Scheme function measure-hydro-recall-features, which is called by the

Scheme code:

(measure-hydro-recall-features wfdata-con initsite det

 dbhydro)

This function has four arguments, which are described in Table 166. The function

takes the waveforms, site information, detection object, and hydro object as input.

The detection and dbhydro objects are the ones obtained from ARS via the tempo-

rary tables. On return, the function updates the features in the dbhydro object.
321

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

322

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N

The function measure-hydro-recall-function creates a hydro object using

the DFX/libhydro function remeasure-hydro. This function is similar to

measure-hydro (described in “Automatic Hydroacoustic Detection [9]” on

page 290) except the onset and termination times are provided from the dbhydro

object. The returned hydro object is the same as that returned by measure-

hydro.

The hydro and detection objects are used to create new dbhydro, dbarrival, and

dbdetection objects. These are then used to update the records in the input data-

base tables.

TABLE 166: FUNCTIONAL INTERFACE OF MEASURE-HYDRO-RECALL-
FEATURES

Argument Name Usage Type Description

wfdata-con input container wfdata objects

initsite input GObj station-specific infor-
mation

det input GObj detection object

dbhydro input and output GObj dbhydro object

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e

I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing

AUTOMATIC HYDROACOUST IC
EVENT CHARACTER IZAT ION [11]

Automatic Hydroacoustic Event Characterization (HydroEvch) is a DFX Scheme appli-

cation that makes amplitude measurements of hydroacoustic waveforms at pre-

dicted signal arrival times. The source code resides in the file DFX-evch-

hydro.scm. HydroEvch is typically called in the automatic post-analyst processing

pipeline. HydroEvch is executed by specifying the database, start-time, end-time,

network, and the DFX-evch-hydro.par file. The predicted arrival and measured

amplitudes are written to the parrival and amplitude tables in the database. The

results of this processing are used in Event Screening.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description includes the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes

■ Detailed Description of Estimate Event Characteristics [11.3]

Genera l Desc r ip t ion

HydroEvch was designed to estimate the maximum possible hydroacoustic signal at

each hydrophone station for each event in the REB that could reasonably produce

a hydroacoustic signal [WGB00c]. It also estimates the noise level for the predicted

time of arrival, which provides a means of validating the signal integrity. For each

origin in the time interval, HydroEvch finds all hydrophone stations in the network

that have a clear water path between the station and event. It predicts an arrival

time window at each of these stations based on the origin error ellipse and hydroa-

coustic travel-time tables. HydroEvch computes up to four amplitude measures
323

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

324

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e

I D C D O C U M E N T A T I O N

within the predicted time window. These amplitude measures are designed to esti-

mate the noise level and the maximum signal level in the time window in two fre-

quency bands. The results are written to the parrival and amplitude tables.

Arch i tec tu re

HydroEvch consists of three processes (see Figure 39). The main processing occurs

within a nested pair of loops. The outer loop cycles over origins, and the inner loop

cycles over the hydrophone stations. Prior to entering the loops, the function

extracts the necessary input parameters from the CVAR datastore. HydroEvch then

queries for the origins within the user-supplied start-time and end-time. The site

information is also initialized prior to entering the nested pair of loops. The signal

amplitudes are measured by the process within the inner loop. This process also

writes the results to the database.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e

I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing

FIGURE 39. ARCHITECTURE OF HYDROEVCH

I nput /Output

HydroEvch is called for an interval of time and a given station network. These

parameters are generally specified on the command line. The rest of the parame-

ters are set or referenced in the DFX-evch-hydro.par file. The CVAR parameters

used in the Scheme code are listed in Table 167.

Parameters
Extract

-sites

11.2

initialize-net

Sites
Initialize

11.1

Query for

-initsite

11.3

process-origin-for

Event
Estimate

Characteristics

parrival,
amplitude,
lastid

origin,
origerr

wfdisc,
affiliation, site
sitechan,

instrument

Exit

no
more

next
site

next
origin

no
more

query-for-dborigin
-by-time

query-for-dborigerr
-by-time

sensor,
Db1

Db

over
Loop

sites

over
Loop

origins

OriginsDb

waveformsD
325

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

326

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e

I D C D O C U M E N T A T I O N

TABLE 167: INPUT PARAMETERS FOR HYDROACOUSTIC EVENT
CHARACTERIZATION PROCESSING

Par Name Source Default Value Description

net command
line

<none> network of stations to pro-
cess

start-time command
line

<none> start-time of the processing
interval

end-time command
line

<none> end-time of the processing
interval

database-account par file <none> database access character-
string

origin-table par file origin input origin table

origerr-table par file origerr input origin error table

out-parrival-table par file arrival output table containing pre-
dicted arrival information
generated by this applica-
tion

out-amplitude-table par file amplitude output table containing
amplitude information gen-
erated by this application

in-wfdisc-table par file wfdisc input table containing
waveform file header and
descriptive information

site-table par file site table containing site-loca-
tion information

sitechan-table par file sitechan table containing station-
channel information

sensor-table par file sensor table containing specific cal-
ibration information for
physical channels

instrument-table par file instrument table containing generic
(default) calibration infor-
mation about a station
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
affiliation-table par file affiliation table containing station and
network affiliations

wfdisc-extension-len par file 86400.0 maximum time duration of
“.w” files in which binary
format waveform time
series are stored on the
UNIX filesystem

evch-hydro-velocity par file 1.485 nominal sound speed in the
ocean

hydro-channels par file ep,sp channel codes for hydro-
phones

hevch-phase-lead par file 60 extra time to ensure win-
dow includes any possible
arrival

hevch-phase-lag par file 60 extra time to ensure win-
dow includes any possible
arrival

hevch-data-offset-len par file <none> extra time to handle edge
effects

evch-lta-len par file 10 length of long-term-aver-
age window

defeat-blockage-check par file 0 flag to turn blockage check-
ing off

blockage-spec-dir par file <none> directory containing block-
age files

hevch-site-recipe-file par file <none> par file pointing to site-spe-
cific recipe files

TABLE 167: INPUT PARAMETERS FOR HYDROACOUSTIC EVENT
CHARACTERIZATION PROCESSING (CONTINUED)

Par Name Source Default Value Description
327

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

328

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Table 168 lists the output of HydroEvch. HydroEvch writes the predicted arrivals

and measured amplitudes to the database, but it first checks the database for pre-

dicted arrivals that already exist in parrival by comparing origin and phase identifi-

ers. Those predicted arrivals that do not already exist are written to the parrival and

amplitude tables. Table 240 on page 450 lists the specific attributes whose values

are written by HydroEvch for each of these database tables.

Processes

The following processes shown in Figure 39 on page 325 are described in this sec-

tion:

■ Query for Origins [11.1]

■ Initialize Sites [11.2]

■ Estimate Event Characteristics [11.3]

Query fo r Or i g in s [11 .1]

This process obtains the origin and origerr records from the database. The queries

are constrained solely by the start-time and end-time set by the user. This process

uses the local Scheme functions query-for-dborigin-by-time and query-

for-dborigerr-by-time. The functions return dborigin and dborigerr contain-

ers. (See “Database Operations” on page 40 for more information about database

queries.) The locations from dborigin are used to determine if an unblocked water

TABLE 168: DATA PRODUCED BY HYDROACOUSTIC EVENT
CHARACTERIZATION PROCESSING

Name Category Description

returned value application exit status indicates success or failure

parrival database table predicted arrival attributes

amplitude database table amplitude and snr estimates
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
path exists between the origin and hydrophone and to predict the arrival time of

hydroacoustic phases. The uncertainty information from dborigerr is used to deter-

mine the time window for measuring amplitudes.

I n i t i a l i ze S i t e s [11 .2]

This process initializes the site information via the local Scheme function initial-

ize-net-sites. The function follows the general form described in “Initializing

Sites” on page 46. It determines which stations are in the network and retrieves

the station-specific information for each one. It also initializes the travel-time tables

and determines the time interval for analysis. The corresponding wfdata and

wfmem containers are read for each station (but the waveforms are not read at this

stage). The function is called by the Scheme language code:

(set! initsite-con (initialize-net-sites dborigin-con

 dborigerr-con))

The function has two arguments, which are described in Table 169. The function

returns an initsite container. The input containers are used only for determining the

time interval. See Table 8 on page 50 for the contents of the returned initsite

objects.

Es t imate Event Cha rac te r i s t i c s [11 .3]

Each origin/site pair is processed by the local Scheme function process-origin-

for-initsite. This function checks for blockage, predicts arrival times, reads

waveforms, estimates amplitude measures, and writes the results to the database.

The function is called by the Scheme code:

TABLE 169: FUNCTIONAL INTERFACE OF INITIALIZE-NET-SITES

Argument Name Usage Type Description

dborigin-con input container dborigin objects

dborigerr-con input container dborigerr objects

n/a returned value container initsite objects
329

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

330

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
(process-origin-for-initsite initsite dborigin dborigerr)

The function process-origin-for-initsite has three arguments, which are

described in Table 170. The initsite object for the current station has been

extracted from the initsite container. The dborigin and dborigerr objects contain the

information for the current origin.

The predicted arrivals and measured amplitudes are written to the parrival and

amplitude tables specified in the CVAR datastore. The origin identifier (orid) links

the origins to the predicted arrivals, and the amplitude identifier (ampid) links the

predicted arrivals to the amplitude measurements. The returned value indicates

success or failure within the function.

For more information on this function see the next section, Detailed Description of

Estimate Event Characteristics [11.3].

Deta i l ed Desc r ip t ion o f E s t imate
Event Cha rac te r i s t i c s [11 .3]

The hydroacoustic event characteristics are estimated for each origin and station.

Figure 40 shows the architecture of the function process-origin-for-

initsite. The function checks if there is an unblocked water path between the

origin and station. If there is no unblocked path, the function immediately returns

with no further computations. Processing continues for event/station pairs that

have an unblocked path. The length of the time window to use for amplitude mea-

TABLE 170: FUNCTIONAL INTERFACE OF PROCESS-ORIGIN-FOR-INITSITE

Argument Name Usage Type Description

initsite input GObj site-specific informa-
tion

dborigin input GObj dborigin object

dborigerr input GObj dborigerr object

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
sures is determined by using the origin location uncertainty. The waveforms are

read, and the predicted arrivals are formed. The amplitude measures occur inside a

loop over the amplitude recipes. The results are screened for previously existing

predicted arrivals. Those that pass are written to the database. These subprocesses

are described in more detail in the following sections.

The following subprocesses shown in Figure 40 are described:

■ Check Station Blockage [11.3.1]

■ Compute Time Interval [11.3.2]

■ Acquire Waveforms [11.3.3]

■ Predict Arrivals [11.3.4]

■ Estimate Amplitudes [11.3.5]

■ Screen and Submit Results [11.3.6]
331

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

332

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 40. ARCHITECTURE OF ESTIMATE EVENT CHARACTERISTICS

Check S ta t ion B lockage [11 .3 .1]

The function process-origin-for-initsite measures amplitudes for event/

station pairs that have an unblocked hydroacoustic path. The subprocess Check

Blockage determines whether a given event has an unblocked hydroacoustic path

Hydro
reset

recipes

11.3.2

Time
Compute

Interval

-amplitudes

11.3.4

measure-origin

Arrivals
Predict

11.3.5

Estimate
Amplitudes

not

blocked

no
more

-hevch-parrivals

11.3.6

screen-existing

Screen and
Submit
Results

blocked

-for-initsite

11.3.3

read-waveforms

initsite
dborigin
dborigerr

M

lastidDb

Check station
11.3.1

blockage
?

Return
over
Loop

amplitude
recipes

amplitude,
Db parrival

next
recipe

Waveforms
Acquire

waveformsD
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
to a given station. This is accomplished with the local Scheme function site-

hydro-blocked, which is a wrapper for the DFX/libutil function ellipse-

path-clear?. The blockage check is liberal; if any part of the 90% error ellipse

has an unblocked path then the station/event path is considered unblocked. This is

less restrictive then the blockage check in Event Screening, which requires the

entire ellipse to be unblocked. The user-parameter skip-blockage-check can be set

to bypass the blockage check and hence compute predicted arrivals for all station/

event pairs. The function is called by the Scheme language code:

(site-hydro-blocked dbsite dborigin dborigerr)

The function site-hydro-blocked has three arguments, which are described in

Table 171. The function returns nil if there is an unblocked water path or if the

parameter defeat-blockage-check has been set to a non-zero value in the CVAR. In

all other cases the function returns t (for true).

Compute T ime In te rva l [11 .3 .2]

This subprocess uses inline Scheme code to estimate a window of time that is large

enough to include a hydroacoustic signal from the event, given the uncertainty in

the location estimate. The time window length is determined by the length of the

error ellipse’s major axis and the nominal ocean’s speed of sound (set in the CVAR

datastore). This time is increased by an amount set in the CVAR parameters, hevch-

phase-lead and hevch-phase-lag, to account for any systematic error that may not

TABLE 171: FUNCTIONAL INTERFACE OF SITE-HYDRO-BLOCKED

Argument Name Usage Type Description

dbsite input GObj dbsite object

dborigin input GObj dborigin object

dborigerr input GObj dborigerr object

n/a returned value logical scalar t (blocked) or
nil (not blocked)
333

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

334

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
be represented in the error ellipse. Because the sound velocity in water is so slow as

compared with seismic velocities, the error in origin time is not significant com-

pared to the error in the location.

Acqu i re Wave fo rms [11 .3 .3]

This subprocess reads the waveforms for the time interval computed in Compute

Time Interval and centered on the predicted arrival time of the hydroacoustic sig-

nal. It uses the local Scheme function read-waveforms-for-initsite, which

reads the appropriate data, checks the quality of the data, and corrects for the

instrument response of the station (see “Correct Waveform for Instrument

Response [9.6.2]” on page 309). The function is called by the Scheme language

code:

(set! wfdata-con (read-waveforms-for-initsite initsite

 dborigin dborigerr))

The function read-waveforms-for-initsite has three arguments, which are

described in Table 172. The returned wfdata container points to the station-cor-

rected waveforms.

Pred i c t A r r i va l s [11 .3 .4]

This subprocess creates the predicted arrival and amplitude database objects via

the global DFX Scheme function measure-origin-amplitudes. The returned

dbparrival and dbamplitude containers have the predicted arrival times, book-keep-

ing information, and amplitude information. The amp attribute in the dbamplitude

TABLE 172: FUNCTIONAL INTERFACE OF READ-WAVEFORMS-FOR-INITSITE

Argument Name Usage Type Description

initsite input GObj site-specific information

dborigin input GObj dborigin object

dborigerr input GObj dborigerr object

n/a returned value container wfdata objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
container is filled with a measure defined in the amplitude recipe. The stav recipe

computes the maximum STA, and the mean-sqr recipe computes the rms of the

signal. The function is called by the Scheme language code:

(set! dbamplitude-dbparrival-list

 (measure-origin-amplitudes wfdata-con dbsite dborigin

 theo-amprec-con))

The function has four arguments, which are described in Table 173. The function

returns a list that holds two containers. The first container has the predicted arrival

objects, and the second container has the amplitude objects.

Es t imate Ampl i tudes [11 .3 .5]

This subprocess makes the noise estimates, computes snrs, and converts amplitude

measures into decibels. These tasks are executed by a set of Scheme functions that

occur within a loop that runs over each dbamplitude object created in Predict Arriv-

als. The results are placed in the appropriate attributes of the dbamplitude object.

First, the noise estimates are made by two local Scheme functions, compute-amp-

beam-lta and compute-ampbeam-lta-squared. The noise estimates are based

on the minimum value of the LTA of the time series and the time series squared,

respectively. These functions use the same two arguments, which are described in

Table 174.

TABLE 173: FUNCTIONAL INTERFACE OF MEASURE-ORIGIN-AMPLITUDES

Argument Name Usage Type Description

wfdata-con input container wfdata objects

dbsite input GObj dbsite object

dborigin input GObj dborigin object

theo-amprec-con input container amplitude estimation rec-
ipe objects

n/a returned value list dbparrival and dbampli-
tude containers
335

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

336

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Next, the appropriate STA for the amplitude type is retrieved from the dbamplitude

container by the function find-stav-measure-for-beam-name. This function

uses three arguments, which are described in Table 175.

The snr is defined as the ratio of the maximum signal amplitude to the minimum

LTA. It is set depending on the method used to compute the amplitude, as follows:

■ If the amplitude type defined by the beam name is the maximum STA,

then the minimum LTA level of the time series is used for the noise level.

■ If the amplitude type is the mean-squared amplitude, then the minimum

LTA level of the squared time series is used for the noise level.

TABLE 174: FUNCTIONAL INTERFACE OF COMPUTE-AMPBEAM-LTA AND
COMPUTE-AMPBEAM-LTA-SQUARED

Argument Name Usage Type Description

amprec input GObj amplitude estimation
recipe objects

wfdata-con input container wfdata objects

n/a returned value real minimum long-term
average

TABLE 175: FUNCTIONAL INTERFACE OF FIND-STAV-MEASURE-FOR-BEAM-
NAME

Argument Name Usage Type Description

beam-name input character-string beam name to match in
amplitude recipe beam-
name attribute

dbamp-con input container dbamplitude objects

amprec-con input container amplitude estimation
recipe objects

n/a returned value real short-term average
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Hydroacoust ic Process ing
Next, a set of inline Scheme code converts the amplitude and signal-to-noise mea-

sures into decibels. If the station has been calibrated, the units are dB relative to

1 mPa, otherwise the units are dB relative to 1 count.

Finally, the amp and snr attributes in the dbamplitude objects are reset to the newly

calculated values. The units attribute is set to “dB rel 1 microPa” if the instru-

ment response was corrected; otherwise, it is set to “dB rel 1 count”.

Sc reen and Submi t Resu l t s [11 .3 .6]

This subprocess screens the newly computed parrival and amplitude records to

ensure that they do not already exist in the database. A parrival record is consid-

ered a duplicate if the origin identifier, station code, and phase identifier for the

predicted arrival matches the same attributes of a predicted arrival already in the

database. The subprocess uses the local DFX Scheme function screen-exist-

ing-hevch-parrivals, which is called by the Scheme language code:

(screen-existing-hevch-parrivals dborigin dbparrival-con

 dbamplitude-con parrival-table)

This function has four arguments, which are described in Table 176. On return, the

dbparrival and dbamplitude containers only have objects that do not already exist

in the database. The function itself returns nothing of interest. For more informa-

tion see “Screening Database Containers” on page 43.

TABLE 176: FUNCTIONAL INTERFACE OF SCREEN-EXISTING-HEVCH-
PARRIVALS

Argument Name Usage Type Description

dborigin input GObj dborigin object

dbparrival-con input and output container dbarrival objects

dbamplitude-con input and output container dbamplitude objects

parrival-table input character-string parrival table
337

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

338

▼

Chapter 5:

Hydroacoust ic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The remaining objects in the parrival and amplitude database containers are sub-

mitted to the database. The subprocess uses a local Scheme function submit-

aux, which is a wrapper for the global Scheme function submit-container-db.

If an error is detected, the changes are discarded using the global Scheme function

rollback-db. For more information on submitting results to the database see

“Writing to the Database” on page 44.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 6: I n f r a son i c P rocess ing

This chapter describes the detailed design of DFX infrasonic processing and

includes the following topic:

■ Automatic Infrasonic Detection [12]
e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1 339

S o f t w a r e
I D C D O C U M E N T A T I O N

340
Chapter 6: I n f r a son i c P rocess ing

AUTOMATIC INFRASONIC
DETECT ION [12]

Automatic Infrasonic Detection (InfraDet) is a DFX Scheme application that makes

detections and measures features of signals recorded at the infrasonic sensor array

stations. The application source code resides in the file DFX-infra-detec-

tion.scm. InfraDet is invoked as part of the automatic pipeline processing and is

run on a given station for specified start-times and end-times. InfraDet makes

detections using a two-stage process: first, in the Primary Detection Space (PDS), a

spatial coherence detector is applied, then, in the Coincidence Detection Space

(CDS), both an STA/LTA energy detector and a spatial coherence detector are

applied. To declare an infrasonic detection the energy and spatial coherence detec-

tors must coincide in exceeding their thresholds. For each detection, this applica-

tion computes a series of features specific to infrasonic processing. The results of

InfraDet are written to the amplitude, arrival, detection, infra_features, and wfdisc

tables. In addition, for each station and processing interval, three coherence traces

are generated and saved as beams that can be displayed in ARS.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description includes the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
■ Detailed Description of Generate Primary Detection Space (PDS) [12.3]

■ Detailed Description of Generate Coherence Traces as Beams [12.4]

■ Detailed Description of Remove Redundant Detections [12.6]

■ Detailed Description of Estimate Signal Amplitude [12.7]

■ Detailed Description of Write Non-Redundant Detections [12.8]

Genera l Desc r ip t ion

This application performs three functions using infrasonic data: It declares detec-

tions, it estimates and saves waveform features, and it generates and saves coher-

ence traces as beams that can be displayed in ARS. The detections are achieved in

a two step process. First, a Primary Detection Space (PDS) is generated based upon

spatial coherence and produces candidate detections. Second, a Coincidence

Detection Space (CDS) is generated based upon the time overlap (coincidence) of

both spatial coherence and energy excess. The CDS determines which detections

are worthy of being declared and analyzed. For each declared detection, InfraDet

estimates a variety of time-domain and frequency-domain waveform features that

may be of use in characterizing the signal.

InfraDet also generates and saves (as beams) three coherence traces that can be

displayed by ARS alongside the input waveforms. One of these traces provides a

time-history of the maximum spatial coherence level (scaled to an equivalent F-

statistic) achieved at each point in time. The other two traces provide the azimuth

and the magnitude trace-velocity values (corresponding to the spatial coherence

trace.) Thus, when displayed as a plot, the spatial coherence level, from time sam-

ple to time sample, gives a visual estimate of the time period where airborne infra-

sonic waves may have swept over the array. This is helpful to human analysts

reviewing the results of automatic processing.

Arch i tec tu re

InfraDet is implemented via a single pass through a sequence of eight processes

(see Figure 41). The process Initialize Parameters initializes a variety of processing

recipes. This is followed by process Acquire Waveforms, which creates a container
341

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

342

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
of wfdata objects that contain wfmem objects and quality-control masks. Then, the

principal infrasonic detection processing is performed by the process Generate Pri-

mary Detection Space (PDS). Following the generation and evaluation of the PDS,

the next process Generate Coherence Traces as Beams creates and writes time series

of measures related to the spatial coherence, which can be displayed as traditional

beams in ARS. Records pointing to the coherence traces are written to the wfdisc

table. The time-series samples of these traces are written as binary files to the

UNIX filesystem. The next process Generate Coincidence Detection Space (CDS)

declares detections where there is overlap in time (1) above threshold spatial

coherence in a given vector-slowness and (2) above threshold occurrence of beam

snr with corresponding vector-slowness. Where there is a declared detection, a

variety of features are extracted from the waveforms in the vicinity of the detec-

tion. The entire set of declared detections are then evaluated to eliminate redun-

dant detections. This is performed by the process Remove Redundant Detections.

For each remaining detection, an amplitude estimate of the signal is extracted. This

is performed by the process Estimate Signal Amplitude. Finally, the detections are

written to the amplitude, arrival, detection, and infra_features database tables by the

process Write Non-redundant Detections.

I nput /Output

Table 177 lists the input CVAR datastore parameters used in the Scheme code.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
FIGURE 41. ARCHITECTURE OF INFRADET

-waveforms

12.2

get-infra

Acquire
Waveforms

-amplitude

12.7

measure-infra

estimate
signal

amplitude

-slow-planes

12.5

infra-wvfrm-eval

Coincidence
generate

Detection Space
(CDS)

amplitude
arrival,
detection,
infra_features

Db Db

-db

12.8

submit-container

Non-redundant
Write

Detections

12.3

Detection Space (PDS)
Generate Primary

infra-fir-filter-data
infra-cross-correlate-pairs

infra-generate
-slowness-planes-cc

infra-peak-eval
-slow-planes

arrival,
detection,
infra_features

Db

12.6

redundant
remove

detections

delete-redundant-det
-objects

screen-infra-dbarrivals
by-existing

-waveforms

12.2

get-infra

Acquire
Waveforms

12.1

Parameters
Initialize

-amplitude

12.7

measure-infra

Estimate
Signal

Amplitude

-slow-planes

12.5

infra-wvfrm-eval

Coincidence
Generate

Detection Space
(CDS)

Exit

-db

12.8

submit-container

12.3

Detection Space (PDS)
Generate Primary

infra-fir-filter-data
infra-cross-correlate-pairs

infra-generate
-slowness-planes-cc

infra-peak-eval
-slow-planes

12.6

Redundant
Remove

Detections

delete-redundant-det
-objects

screen-infra-dbarrivals
by-existing

-score-boards

12.4

infra-beam-from

Coherence
Generate

Traces as Beams

affiliation,
instrument, sensor,
site, sitechan, wfdisc

Db

wfdiscDbDb

waveformsD

waveformsD
343

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

344

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 177: INPUT PARAMETERS FOR AUTOMATIC INFRASONIC DETECTION
PROCESSING

Par Name Source Default Value Description

sta command
line

<none> station code

start-time command
line

<none> start-time of processing
interval

end-time command
line

<none> end-time of processing
interval

wfdisc-extension-
time

par file <none> maximum time duration
of “.w” files in which
binary format waveform
time series are stored on
the UNIX filesystem

qcstats-scheme-file par file <none> filename containing the
QCStats source code

affiliation-table par file affiliation table containing station
and network affiliations

site-table par file site table containing site-loca-
tion information

sitechan-table par file sitechan table containing station-
channel information

sensor-table par file sensor table containing specific
calibration information for
physical channels

instrument-table par file instrument table containing generic
(default) calibration infor-
mation about a station

in-wfdisc-table par file wfdisc input table containing
waveform file header and
descriptive information

out-amplitude-table par file amplitude output table containing
amplitude estimates gen-
erated by this application
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
Table 178 describes the output of InfraDet. InfraDet writes the results to the ampli-

tude, arrival, detection, and infra_features tables. (InfraDet also generates and writes

coherence traces [as beams]. There are two output entities per coherence trace: a

time-series file [with extension “.w”] and a corresponding record to the wfdisc

table.)

out-arrival-table par file arrival output table containing
signal arrival information
generated by this applica-
tion

out-detection-table par file detection output table containing
signal detection informa-
tion generated by this
application

out-infra_features-
table

par file infra_features output table containing
signal attributes extracted
by this application

out-wfdisc-table par file wfdisc output table containing
waveform file header and
descriptive information
generated by this applica-
tion

qcstats-table1 par file <none> table containing statistical
measures of the input
waveforms developed by
the quality-control func-
tion and written by this
application

perform-qcstats1 par file 0

(false)

flag for generating and
writing quality-control
statistics: 0 means do not
collect the data quality
statistics

1. optional symbols local to InfraDet

TABLE 177: INPUT PARAMETERS FOR AUTOMATIC INFRASONIC DETECTION
PROCESSING (CONTINUED)

Par Name Source Default Value Description
345

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

346

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The time-series for each coherence trace is written to the UNIX filesystem in the

directory and filenames delineated by the dir and dfile attributes of the wfdisc

table. The directory name is of the form /base/YYYY/JJJ/ where JJJ is the Julian

day of the year (with leading zeros as required), and YYYY is the four-digit year for

the given input waveforms used to develop the information generated in this pro-

cessing interval. The base directory path is set in the DFX-infra-detec-

tion.par file by the data-output-base-directory parameter.

Table 241 on page 451 indicates the specific attributes written for each of these

database tables. The duplication of information between the arrival and detection

tables, and between these and the amplitude table is intentional; it supports param-

eter estimate refinement procedures.

TABLE 178: DATA PRODUCED BY AUTOMATIC INFRASONIC DETECTION
PROCESSING

Name Category Description

returned value application exit status indicates success or failure

amplitude database table signal amplitude for each infrasonic detection

arrival database table arrival attributes of each infrasonic detection

detection database table detection attributes of each infrasonic detec-
tion

infra_features database table waveform attributes, both time-domain and
frequency-domain, for each infrasonic detec-
tion

qcstats1

1. The table is written to only if appropriate processing parameter values have been set to allow
for this.

database table statistical attributes of the waveforms devel-
oped by the quality-control procedures

wfdisc database table auxiliary beams developed from data gener-
ated in the Primary Detection Space

“.w” binary files coherence trace; time-series sample values
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
Processes

The following processes shown in Figure 41 on page 343 are described in this sec-

tion:

■ Initialize Parameters [12.1]

■ Acquire Waveforms [12.2]

■ Generate Primary Detection Space (PDS) [12.3]

■ Generate Coherence Traces as Beams [12.4]

■ Generate Coincidence Detection Space (CDS) [12.5]

■ Remove Redundant Detections [12.6]

■ Estimate Signal Amplitude [12.7]

■ Write Non-Redundant Detections [12.8]

I n i t i a l i ze Pa ramete r s [12 .1]

InfraDet requires a variety of parameters for describing the station to be processed,

for acquiring waveforms, and for controlling the processing performed. The Initial-

ize Sites process acquires the relevant parameters and binds the Scheme symbols

required for subsequent processing. This process is implemented by the global

Scheme function init-<name>-recipe, where <name> is the recipe name.

Table 179 lists the full set of recipes required for InfraDet processing.
347

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

348

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The functions, init-<name>-recipe, return a recipe container or a recipe object

(see Table 179). For all but the amplitude recipes these recipe initialization func-

tions are called by Scheme language code such as:

(set! <name>-obj (init-<name>-recipe))

The functions have no arguments; the recipe parameters are obtained directly from

the CVAR datastore.

The amplitude-recipe initialization function is slightly different and is invoked with

the following Scheme language code:

(set! amprec-con (init-amplitude-recipe beam-rec-con

 ti-rec-con))

TABLE 179: RECIPE INFORMATION INITIALIZED FOR INFRADET PROCESSING

Recipe:
Symbol:
<Name>

General or
Site-specific Type Description

beam-recipe(s):
beam-rec-con:
beam

site-specific container beam-recipe objects that define
the extent and sampling of the
vector-slowness coverage and
filter bands

infra-recipe:
infra-rec-obj:
infra

site-specific GObj infra-recipe object parameters
governing the infrasonic-detec-
tion processing

QC-recipe:
qc-rec-obj:
qc

site-specific GObj qc-recipe object parameters
governing the quality-control
processing

time-interval-recipe:
ti-rec-con:
ti

general container time-interval-recipe object
parameters governing the defi-
nition of the applicable time-
interval for amplitude-estima-
tion processing

amplitude-recipe:
amp-rec-con:
amplitude

site-specific container amplitude-recipe object param-
eters governing the amplitude-
estimation processing
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
The function requires two arguments, which are described in Table 180. The func-

tion returns a container of amplitude-recipe objects.

Acqu i re Wave fo rms [12 .2]

This process seeks available waveforms for the given station and processing inter-

val and reads these waveforms into memory. It also checks the quality of the data

to identify problems and apply minor repairs to the acquired waveforms. This pro-

cess is implemented by the local Scheme function get-infra-waveforms. It is

called by the Scheme language code:

(set! wfdata-con (get-infra-waveforms infra-rec-obj

 beam-rec-con qc-rec-obj))

The function requires three arguments, which are described in Table 181.

TABLE 180: FUNCTIONAL INTERFACE OF INIT-AMPLITUDE-RECIPE

Argument Name Usage Type Description

beam-recipe-con input container beam-recipe objects

ti-rec-con input container time-interval-recipe objects

N/A returned value container amplitude-recipe objects

TABLE 181: FUNCTIONAL INTERFACE OF GET-INFRA-WAVEFORMS

Argument Name Usage Type Description

infra-rec-obj input GObj infrasonic detection processing
recipe object

beam-rec-con input container beam-recipe objects

qc-rec-obj input GObj processing-recipe object for check-
ing the quality of the data

n/a returned value container wfdata objects
349

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

350

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The standard method for acquiring waveforms is discussed in “Reading Wave-

forms” on page 58. InfraDet uses this method with the following principal differ-

ences:

■ The requested data interval (symbol data-interval-list) is obtained from

the DFX/libinfra function get-infra-data-interval.

■ The actual data interval (symbol processing-interval-list) is obtained from

the DFX/libinfra function get-infra-processing-interval.

■ After the wfdata container (symbol wfdata-con) is filled, the number of

objects (sensors) it contains is evaluated to determine whether a suffi-

cient number (three or more) are present to allow for infrasonic process-

ing.

■ After the quality-control processing is called, the number of objects in the

wfdata container is again evaluated to determine whether a sufficient

number are still present. This second count is necessary because quality-

control processing has the potential to delete the data from sensors if

these data are found to be excessively defective. If the sensor count in

the quality-checked wfdata container is less than three, the application

exits; otherwise, it returns a quality-checked wfdata container to the call-

ing application.

For this application, for the given station and processing time interval, this function

performs the following activities:

1. Extract parameters from CVAR directly. Create initially null local symbols

for sta-list, chan-list, data-interval-list, wfdata-con, and wfmem-con. Set

the local symbol perform-qcstats in accordance with whether or not the

CVAR datastore requires the production of quality-control statistical

measures.

2. Obtain an initial container of waveforms objects (local symbol wfdata-

con) by querying the database via the local Scheme function get-ini-

tial-wfdata-con (for general information on how database queries

are implemented see “Querying the Database” on page 41).
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
3. Determine whether or not wfdata-con is null. If it is null, exit via the glo-

bal Scheme function error-fatal, and return a formatted error mes-

sage; otherwise, go to step 4.

4. Determine the requested data interval (symbol data-interval-list) via the

DFX/libinfra function get-infra-data-interval. (This function

accounts for edge effects from filter start-up and tail-off, lag-space

requirements for beamforming, stav and ltav start-up lengths, and so

on.)

5. Determine whether or not data-interval-list is null. If it is null, exit via the

global Scheme function error-fatal, and return a formatted error

message; otherwise, go to step 6.

6. Set the desired processing time interval to the values returned from get-

infra-data-interval.

7. Extract the list of stations (symbol sta-list) and channels (symbol chan-

list) from the initial waveforms container (symbol wfdata-con) via the

intrinsic Scheme functions set and unique, the global Scheme function

map-container, and the common libgobj Scheme function extract-

gobj-attr (common libgobj), used in conjunction with the lambda

construct.

8. Extract the list of unique station-channel pairs via the Scheme functions

set, unique-test, map-container, list, and extract-gobj-

attr, used in conjunction with the lambda construct.

9. Obtain a container of wfmem objects (symbol wfmem-con) from the

wfdisc database table via the global Scheme function query-for-

wfmem-by-sta-chan-time.

10. Determine whether or not wfmem-con is null. If it is null, exit via the

generic Scheme function fatal-error, and return a formatted error

message; otherwise, go to step 11.

11. Read the data from the disk into the wfmem objects via the DFX/libdata

function read-waveforms. Return a container of wfdata objects that

point at wfmems that contain time-series data for the given sta-list,

chan-list, and desired processing time interval.
351

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

352

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
12. Determine whether or not wfdata-con is null. If it is null, exit via the

generic Scheme function fatal-error, and return a formatted error

message; otherwise, go to step 13.

13. For this returned container of waveforms objects (wfdata-con), determine

the processing time interval (symbol processing-interval-list) via the DFX/

libinfra function get-infra-processing-interval.

14. Determine whether or not processing-interval-list is null. If it is null, exit

via the generic Scheme function fatal-error, and return a formatted

error message; otherwise, go to step 15.

15. Set the start-times and end-times in the CVAR datastore via the intrinsic

Scheme functions car and cadr, and the common libscheme Scheme

function set-cvar.

16. Determine whether sufficient (three or more) sensors are present in the

waveforms container to allow for infrasonic processing. If they are not,

issue a formatted warning message, and return control to the calling pro-

gram via the intrinsic Scheme function exit; otherwise, go to step 17.

17. Check and repair, as possible, the waveforms via the DFX/libqc function

qc-waveforms-all.

18. If quality-control statistical measures are required, use the DFX/libqc

functions qc-perform-stats and process-qcstats.

19. Delete bad station-channels from the waveforms container returned by

the qcstats functions,

Genera te P r imary Detec t ion
Space (PDS) [12 .3]

This application bases the declaration of infrasonic detection on coincidence (that

is, time overlapped) in the occurrence of energy in excess of a fixed threshold and

in the occurrence of a level of spatial coherence above a fixed threshold. Both the

energy excess and the level of spatial coherence are estimated for beams steered to

the same value of vector-slowness. To determine the vector-slowness values in

which to efficiently search for coincidence detection, this application first generates
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
a Primary Detection Space (PDS) based on spatial coherence alone. The candidate

detections found in this PDS are used to define the vector-slowness values for

which coincidence detection is sought. This process generates candidate detections

based upon the level of spatial coherence within an array of infrasonic sensors. The

level of spatial coherence, also known as the detection statistic, is estimated from

the mean of the aligned normalized coherent cross-correlations among the band-

pass-filtered waveforms received at the sensor array. The alignments are selected

to span a range of vector-slowness values for the given site, sensor subgroup, and

spectral band as defined by the beam recipes. The set of detection-statistic values

that are calculated for each of the vector-slowness hypotheses completes the gen-

eration of a slowness plane (that is, a three-dimensional entity in which the spatial

coherence level [one dimension] is given as a function of two orthogonal compo-

nents of vector-slowness [two more dimensions], azimuth, and magnitude-slow-

ness). The PDS is generated by taking the slowness planes for all of the filter

bands, all of the processing time windows (also referred to as epochs), and all of

the subgroups of three or more sensors at the given array station. Candidate

detections are developed by comparing the detection statistic with a threshold

value for each slowness plane in the PDS. In each slowness plane, up to six candi-

date detections have their vector-slowness coordinates refined, provided they are

all above the threshold and are sufficiently separated in slowness from one

another. The default limit of six candidate detections is set in the DFX libinfra via a

C-code compiler directive of the #define type. These candidate detections are

the basis for further processing to achieve declared detections.

This process is implemented by the following DFX/libinfra functions:

infra-fir-filter-data

infra-cross-correlate-pairs

infra-generate-slowness-planes-cc

infra-peak-eval-slow-planes

These functions are invoked by Scheme language calls in the following sequence:

(set! bpf-con-con (infra-fir-filter-data wfdata-con

 beam-rec-con infra-rec-obj))
353

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

354

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
(set! ncc-con-con (infra-cross-correlate-pairs

 bpf-con-con beam-rec-con infra-rec-obj))

(set! slplcc-con-con (infra-generate-slowness-planes-cc

 ncc-con-con beam-rec-con infra-rec-obj))

(set! sbcc-con-con (infra-peak-eval-slow-planes

 slplcc-con-con ncc-con-con beam-rec-con infra-rec-obj))

The functions require the arguments described in Table 182.

TABLE 182: FUNCTIONAL INTERFACE OF FUNCTIONS USED TO GENERATE
PRIMARY DETECTION SPACE (PDS)

Argument Name Usage Type Description

wfdata-con input container wfdata objects

beam-rec-con input container beam-recipe objects

infra-rec-obj input GObj infrasonic detection pro-
cessing recipe object

bpf-con-con input and
output

container of
containers

bandpass-filtered wave-
form objects (actually, tra-
ditional beam objects in
structure)

ncc-con-con input and
output

container of
containers

normalized cross-correla-
tion objects

slplcc-con-con input and
output

container of
containers

slowness-plane objects

(generated from aligned
normalized cross-correla-
tions)

sbcc-con-con output container of
containers

score-board objects

(generated from slowness
planes)

bpf-con-con

ncc-con-con

slplcc-con-con

sbcc-con-con

returned values container of
containers

container of the given
class
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
The function infra-fir-filter-data produces bandpass-filtered waveforms

from the quality-checked waveforms input by wfdata-con. The bandpass filters

are finite impulse response (FIR) filters, which are characterized by phase-

responses that are linear with frequency. Thus, the group-delay is constant with

respect to frequency. Filters of this nature preserve coherence from station to sta-

tion within a sensor array. The returned output from this function is a container of

containers of beam objects (symbol bpf-con-con). Each filter band has an inner

container. This inner container contains one beam object for each sensor. The data

vectors in these beam objects only contain the FIR bandpass-filtered waveforms for

a single sensor.

The function infra-cross-correlate-pairs produces normalized cross-cor-

relations between the bandpass-filtered waveforms from the independent pairs of

sensors. The sensor pairs are defined using the beam-recipe element groups for

each filter band. The generation of normalized cross-correlation functions is per-

formed for only those sensor pairs required for a given filter band. The returned

output from this function is a container of normalized cross-correlation containers

(symbol ncc-con-con). Each distinct filter band has an inner container. This inner

container contains all of the normalized cross-correlation objects, one for each sen-

sor pair for each time position of the processing window.

The function infra-generate-slowness-planes-cc combines all the normal-

ized cross-correlation pairs to generate a detection statistic as a function of azi-

muth and magnitude-slowness. The generation of a slowness plane populates a

six-dimensional space: three explicit dimensions, time (processing window, also

known as epochs), frequency (filter band), and space (beam group), and three

intrinsic dimensions within each slowness plane, azimuth (q), magnitude-slowness,

(|s|), and detection-statistic value ([snr]e). The PDS is the collection of slowness

planes for the given band and beam group combinations for all the successive

epochs in the overall processing interval. The PDS is treated as a three-dimensional

space where the fundamental entity is the slowness plane where each slowness

plane is itself a three-dimensional entity. The output from this function is a con-

tainer of slowness-plane containers (symbol slplcc-con-con). Each distinct filter

band has an inner container. This inner container contains all of the slowness

planes, one for each beam group for each time position of the processing window.
355

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

356

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The function infra-peak-eval-slow-planes evaluates each of the slowness

planes to determine whether or not there is evidence of a candidate detection. The

evaluation is based upon the level of spatial coherence exhibited. A score-board

object is generated for each slowness-plane object. The score-board object is a tab-

ulation of the candidate detection’s attributes and the single best refined peak

regardless of whether it is a detection. The attributes include the detection-statistic

value, the azimuth, the magnitude trace-velocity (inverse of magnitude-slowness),

and the error estimates for each of the two vector-slowness coordinates. For each

slowness-plane object a score-board object is returned by this function; thus, the

returned entity is a container of score-board containers (symbol sbcc-con-con). Each

distinct filter band has an inner container. This inner container contains all of the

score boards, one for each beam group for each time position of the processing

window.

For more information on this function see the “Detailed Description of Generate

Primary Detection Space (PDS) [12.3]” on page 366.

Genera te Coherence Traces a s
Beams [12 .4]

This process produces infrasonic detection-related time series that can be displayed

alongside waveforms in ARS. These time series are formatted identically as tradi-

tional beams and are referred to as coherence traces because they are derived from

the spatial coherence information that was generated to form the PDS. These

coherence traces allow the infrasonic detection results to be related to the wave-

forms from which the PDS was generated. The following coherence traces are

extracted from the PDS:

■ time series of maximum spatial coherence (transformed to the F-statistic)

■ time series of the azimuth at which this maximum level of spatial coher-

ence was realized

■ time series of the magnitude-trace-velocity at which this maximum level

of spatial coherence was realized
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
These time series, when viewed alongside the array channel waveforms, allow an

analyst to relate detections with coherent features in the waveforms.

This process is implemented by the DFX/libinfra function infra-beam-from-

score-boards, which is called by the Scheme language code:

(set! y-beam (infra-beam-from-score-boards sbcc-con-con

 ÒtypeÓ ÒnameÓ Òbeam_idÓ))

The function requires four arguments, which are described in Table 183.

The function infra-beam-from-score-boards reads the score boards and

extracts a numerical attribute specified by the name parameter. The time series of

this parameter is transformed into a beam object, which is provided as the returned

value. The beams are written to the UNIX filesystem with corresponding records

written to the wfdisc database table.

InfraDet creates and writes three “max”-types of beams as a standard set of coher-

ence traces. Beams of type “max” are time-series of the given parameter (identi-

fied by name) for the specific combination of processing band and beam-group

TABLE 183: FUNCTIONAL INTERFACE OF INFRA-BEAM-FROM-SCORE-
BOARDS

Argument Name Usage Type Description

sbcc-con-con input container of con-
tainers

score-board objects

type input character-string indicating either max
or avg

name input character-string name of parameter
(in the score-board
objects) to be turned
into beam

beam_id input character-string this beam’s designa-
tion in displays such
as ARS

n/a returned value GObj beam object
357

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

358

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
that has the highest level of spatial coherence. The specific combination of band

and beam-group may vary from one time sample to the next. Table 184 describes

the attributes of these beams. For more information on this function see “Detailed

Description of Generate Coherence Traces as Beams [12.4]” on page 376.

Genera te Co inc idence Detec t ion
Space (CDS) [12 .5]

Based on the candidate detections generated in the PDS, this process develops

declared detections that exhibit both a sufficient level of spatial coherence and a

sufficient level of energy in excess of the ambient noise level. This process is imple-

mented by the DFX/libinfra function infra-wvfrm-eval-slow-planes. This

function is called by the Scheme language code:

(set! sbcc-con-con (infra-wvfrm-eval-slow-planes

 sbcc-con-con ncc-con-con beam-rec-con infra-rec-obj))

The function requires four arguments, which are described in Table 185.

TABLE 184: AUXILIARY BEAMS CREATED AND WRITTEN BY
AUTOMATIC INFRASONIC DETECTION

Beam_id Parameter1

1. The parameter entities in quotes are the actual names of the parameter in the score-board
object or selected parameters derived from score-board parameters.

ÒmxÓ “f-stat” = 1 + “used_channels” * “tst_stat”

 = 1 + J * (snr)e
where J = number of non-collocated sensors

ÒazÓ “az_mean” azimuth in degrees

ÒslÓ “v_tr_mean” magnitude-trace-velocity in meters/second
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
The function infra-wvfrm-eval-slow-planes evaluates the score boards to

generate a list of all candidate detections from the PDS. It then groups the detec-

tions that are similar in their vector-slowness coordinates into clusters. These clus-

ters are then used to form beam pairs steered to the vector-slowness of the cluster.

The pair is comprised of an energy beam and an F-statistic beam. For each cluster’s

beam pair, the energy beam is evaluated for energy in excess of the ambient noise

level, and the F-statistic beam is evaluated for a sufficiently high spatial coherence

level. For each cluster, a detection is declared when both beams satisfy detection

criteria for some period of time in common. A “vernier” f-k spectrum is generated

to quantify the level of spatial coherence in precisely the direction of the incident

plane wave. It also refines the plane wave’s arrival parameters, azimuth, and slow-

ness. In addition, error estimates are generated for the vector-slowness coordinates

and both time-domain and frequency-domain signal features are estimated. The

function infra-wvfrm-eval-slow-planes returns a container of containers of

infra-detection objects. Each distinct cluster that was found to contain one or more

declared detections has an inner container. This inner container holds all of the

infra-detection objects from a single cluster ordered by arrival time. All of the inner

containers are held within the outer container (symbol infra-det-con-con).

TABLE 185: FUNCTIONAL INTERFACE OF FUNCTIONS USED TO GENERATE
COINCIDENCE DETECTION SPACE (CDS)

Argument Usage Type Description

sbcc-con-con input container of con-
tainers

score-board objects

ncc-con-con input container of con-
tainers

normalized cross-
correlation objects

beam-rec-con input container beam-recipe
objects

infra-rec-obj input GObj infrasonic detec-
tion processing rec-
ipe object

n/a returned value container of con-
tainers

infrasonic detec-
tion objects
359

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

360

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The coincidence detection processing algorithm is as follows:

1. The first subprocess groups the PDS candidate detections. The best (in a

spatial-coherence-level sense) candidate detection among all the score

boards is used as the “seed” contact1 of the first cluster. All other candi-

date detections in the entire PDS whose vector-slowness values are suffi-

ciently close to the vector-slowness value of this “seed” contact are

assigned to this first cluster. After it is assigned to a contact cluster, a can-

didate detection is no longer available as a seed and cannot be assigned

to any other cluster. After the first contact cluster has been created, the

best candidate detection remaining unassigned is used as the “seed”

contact for the second contact cluster. All unassigned candidate detec-

tions whose vector-slowness values are sufficiently close to this “seed”

contact are assigned to this second cluster. This process is repeated until

all candidate detections have been assigned to a cluster. A cluster may

have only a single candidate detection. Generally between one and a few

dozen clusters are formed for a typical processing interval. The vector-

slowness “closeness” criterion used in forming the contact clusters is set

in the infrasonic detection processing recipe in the parameter

slowness_criterion. The smaller this parameter’s value, the more contact

clusters can be formed.

2. The second subprocess generates the pairs of beams (the energy beam

and the F-statistic beam) that are steered in the vector-slowness direction

of each cluster’s seed contact. The energy beam is a traditional delay-

and-sum coherent beamformed from the bandpass-filtered waveforms.

The F-statistic beam is a sample-by-sample estimate of the F-statistic,

where the integration time (the processing window duration) is defined

by the coherent-integration-time parameter in the infrasonic detection

processing recipe.

3. The third subprocess evaluates the beam pairs. For each cluster the

energy beam-detection statistic is calculated by computing the ratio of

the STA to the time-lagged LTA of the energy beam. Both the STA and

1. The terms “candidate detection” and “contact” are used interchangeably.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
the LTA use an L1 norm. (See [IDC5.2.1] for more information on com-

puting STA and LTA.) The time series of the STA/LTA is searched for can-

didate energy peaks. The biggest peak is the first energy peak defined,

and it is retained if its ratio is above the threshold value set in the infra-

sonic detection processing recipe in parameter “sta_lta_threshold”. If this

peak is below the threshold, there are no energy-peak detections and

therefore no coincidences and no declared detections. If more than one

energy peak is above the threshold, then the energy beam is searched for

the next energy peak that occurs sufficiently before or after the first

peak. If there is such an above-threshold energy peak, then it is consid-

ered for retention. It is retained if there is a “valley” between energy

peaks that is sufficiently deep compared with the STA/LTA value of the

previously retained peak. The valley-depth criterion, expressed as a frac-

tion of the previously retained peak STA/LTA value and the time-close-

ness criterion for retaining two successive energy peaks, is set in C-code

within DFX/libinfra. This procedure is repeated until all candidate energy

peaks have been considered. The time duration of the energy packet

associated with each retained energy peak is defined by the times imme-

diately before and after the given peak where the STA/LTA value drops

below the threshold value. Each retained peak defines an energy packet

of finite time-duration and peak time.

A coincidence detection is declared wherever an energy packet has one

or more time samples of overlap with an above threshold level on the

F-statistic beam. The threshold applied to the F-statistic beam is set in the

infrasonic detection processing recipe in the parameter

coherent_threshold.

4. The fourth subprocess generates a “vernier” f-k spectrum for each coin-

cidence detection in a given cluster. The f-k spectrum is centered at the

time of the energy packet’s peak. The waveform-analysis interval is set to

match the time duration of this energy packet. The filtering of the wave-

forms and the spectral extent of the f-k spectrum are set identically and

to the band limits of the processing band that was used to generate the

seed contact for the cluster being processed. In contrast with the FIR
361

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

362

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
bandpass filtering applied to the waveforms used in the PDS, the wave-

forms for the “vernier” f-k spectrum are filtered with Infinite Impulse

Response (IIR) bandpass filters; that is, the recursive (libfilter) algorithms

are used. (See [IDC5.2.1] for more information on filtering waveforms.)

This f-k spectrum is “vernier” in the sense that the waveforms are pre-

aligned in time to a vector-slowness close to that of the seed contact for

the cluster being processed, and the slowness plane is very finely

resolved in vector-slowness covering only a small slowness area. The glo-

bal peak value of F-statistic quantifies the spatial coherence of this detec-

tion.

5. The fifth subprocess estimates several of the signal’s attributes for each

coincidence detection in a given cluster. These estimates include:

– errors in azimuth and magnitude-slowness (square root of the sum

of estimated measurement and modeling variances)

– corner frequency and its error

– zero-crossing frequency and its error

– start-time, time-duration, and error in time-duration of the energy

packet

– start-time, time-duration, and error in time-duration of the interval

of above threshold spatial-coherence

– start-time, time-duration, and error in time-duration of the interval

of coincidence

– total energy in the energy packet

– level of coherent snr

– coherent period

For each coincidence detection in a given cluster, an infra-detection

object is created (a detection is declared). All of the infra-detection

objects for a given cluster are put into a container. Each of these contain-

ers are put in an outer container. The outer container of infra-detection

containers (symbol infra-det-con-con) is returned by this function.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
Remove Redundant Detec t ions [12 .6]

This process creates the appropriate entities with which to update the arrival, detec-

tion, and infra_features tables of the database. These entities are created from the

information in the container of containers of infra-detection objects. This process

performs two levels of redundancy elimination. First, for a given cluster, it elimi-

nates redundant detections that are too close in time to one another. Second, it

eliminates the detections too close in time and vector-slowness with detections

already in the database. If a new detection is eliminated (deleted), then all associ-

ated entities (the dbarrival, the dbdetection, and the dbinfra_features) are also

deleted.

This process prints a warning message for each deleted detection. It also prints an

error message if all detections developed during this processing time-interval for

this site have been deleted. This function generally follows the conventions

described in “Screening Database Containers” on page 43; however, for more

information on this function see “Detailed Description of Remove Redundant

Detections [12.6]” on page 381.

Es t imate S i gna l Ampl i tude [12 .7]

InfraDet estimates the waveform amplitude of each declared detection in a fashion

appropriate for airborne infrasonic energy. Estimate Signal Amplitude measures the

maximum peak-to-trough amplitude across a single zero-crossing of the “beam-

formed” bandpass-filtered waveforms within a defined processing window. The

qualifier beamformed is in quotes because the beam formation is strictly a matter

of data formatting to allow existing library functions to be applied; there is no sum

over the waveforms from multiple sensors. Rather, the waveforms from each sen-

sor are measured, and an evaluation process is applied to select that sensor’s mea-

surement that is to be reported.

This process first checks if required instrument response files are accessible via the

local Scheme function instrument-response-files-exist?. This function is

called by the Scheme language code:
363

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

364

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
(set! files-exist (instrument-response-files-exist?

 wfdata-con))

The function requires one argument, which is described in Table 186.

If one or more of the required instrument-response files are not accessible, then a

warning message is printed, and this function returns a value of zero; otherwise, it

returns a value of unity.

The process Estimate Signal Amplitude estimates the waveform amplitude in a

manner appropriate for infrasonic processing. The fundamental estimation algo-

rithm is a traditional seismic amplitude estimation function, measure-amplitude,

which is provided in the library DFX/libamp.

This process is implemented by the local Scheme function measure-infra-

amplitude as well as by a number of other local, global, and intrinsic Scheme

functions. This function is called by the Scheme language code:

(set! dbamp-out-con (measure-infra-amplitude

 infra-det-con-con wfdata-con amp-rec-con infra-rec-obj))

The function requires four arguments, which are described in Table 187.

TABLE 186: FUNCTIONAL INTERFACE OF INSTRUMENT-RESPONSE-FILES-
EXIST?

Argument Name Usage Type Description

wfdata-con input container wfdata objects

n/a returned value logical scalar 1 if the files exist

0 if the files do not exist
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
This function operates on the container of infra-detection containers, an amplitude

recipe container, a wfdata container, and an infrasonic detection processing recipe

object. It returns a dbamplitude container. A warning message is printed if this

function fails to estimate the signal amplitude for any of the infra-detection objects.

If the amp and per attributes of infrasonic detections in the arrival table of the data-

base are to be updated with the amplitude and period estimates from the amplitude

table where arrival identification numbers (arids) match, then the local symbol

update-arrivals must be reset to unity. Currently, the arrival table is not being

updated, and a warning message is being returned. If this updating is switched on

by resetting the symbol update-arrivals to unity, then the local Scheme function

update-arrivals-with-amp-info will adjust the dbarrival objects in the con-

tainer of non-redundant detections to have their amp and per parameters set in

accordance with the amp and per parameters in the corresponding dbamp objects.

For more information about this function see “Detailed Description of Estimate

Signal Amplitude [12.7]” on page 391.

TABLE 187: FUNCTIONAL INTERFACE OF MEASURE-INFRA-AMPLITUDE

Argument Name Usage Type Description

infra-det-con-con input container of
containers

infra-detection objects

wfdata-con input container wfdata objects

amp-rec-con input container amplitude estimation pro-
cessing recipe objects

infra-rec-obj input GObj infrasonic detection pro-
cessing recipe object

n/a returned value container dbamplitude objects
365

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

366

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Wri te Non-Redundant Detec t ions [12 .8]

This process writes the dbarrival, dbdetection, dbinfra_features, and dbamplitude

containers to the appropriate database tables. With the exception of the dbampli-

tude container, the other containers are submitted in the following order: dbarriv-

als, dbdetections, and dbinfra_features. The dbamplitudes are only submitted to the

database if the local symbol do-amp is set to unity. For more information about

submitting results to the database see “Writing to the Database” on page 44.

After the non-redundant detections have been written to the database success-

fully, the database is “committed” by the global Scheme function commit-db.

For more information about this process see “Detailed Description of Write Non-

Redundant Detections [12.8]” on page 399 .

Deta i l ed Desc r ip t ion o f Genera te
P r imary Detec t ion Space (PDS) [12 .3]

InfraDet declares detections by seeking coincidence of energy in excess of a fixed

threshold and spatial coherence level in excess of another fixed threshold for a pair

of beams steered in the vector-slowness of an hypothesized infrasound source. It

would be computationally burdensome to search all feasible directions and magni-

tude-slowness values, in the required small step sizes, with the coincidence detec-

tor directly. Rather, the PDS is generated to provide a comparatively small number

of vector-slowness values that are worthy of further detection search efforts. The

process Generate Primary Detection Space (PDS) accomplishes this. Figure 42 shows

the architecture of this process, which invokes four DFX/libinfra subprocesses. The

first subprocess generates bandpass-filtered waveforms. Then next subprocess

generates normalized cross-correlation functions from the bandpass-filtered wave-

forms via the function infra-cross-correlate-pairs. The next subprocess

generates slowness planes, and, finally, the last subprocess evaluates the slowness

planes and summarizes their information content into score boards: one score

board for each slowness plane.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
Four new object classes are defined in DFX/libinfra: bandpass-filter-specification

objects, normalized cross-correlation objects, slowness-plane objects, and score-

board objects. This process has the container of beam objects (which hold the

bandpass-filtered waveforms) as well as these four new object classes as its output.

FIGURE 42. ARCHITECTURE OF GENERATE PRIMARY DETECTION SPACE (PDS)

The following subprocesses shown in Figure 42 are described in this section:

■ Filter Waveforms [12.3.1]

■ Cross-correlate Waveforms [12.3.2]

■ Generate Slowness Planes [12.3.3]

■ Evaluate and Refine Slowness Planes [12.3.4]

beam-recipe container,
infra-recipe object,
wfdata container

-filter-data

12.3.1

infra-fir

Filter

Waveforms

-correlate-pairs

12.3.2

infra-cross

Cross-correlate
Waveforms

-slowness-planes-cc

12.3.3

-infra-generate

Slowness
Generate

Planes

-slow-planes

12.3.4

infra-peak-eval

and Refine
Evaluate

Slowness
Planes

ReturnM

bandpass-
M filter objects

slowness-plane
M objects

score-board
M objects

normalized
cross-correlation
objects

M

367

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

368

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
F i l t e r Wave fo rms [12 .3 .1]

This subprocess applies finite impulse response (FIR) bandpass filters (BPFs) to the

quality-checked waveforms using filter parameters in the beam recipes or each

sensor referenced in the beam-recipe container. This subprocess is implemented by

the DFX/libinfra function infra-fir-filter-data. This function is called by

Scheme language code such as:

(set! bpf-con-con (infra-fir-filter-data wfdata-con

 beam-rec-con infra-rec-obj))

The function requires three arguments, which are described in Table 188.

The FIR filters are selected from a set of filters contained in a file specified by the

infrasonic detection processing recipe parameter filter-file-name-infra. The filters

that match closest to frequency filter limits specified in the beam recipes (symbol

beam-rec-con) are used. Beam recipes that are associated with the same FIR filter

are thereby processed in the same filter band. After the processing band allocations

have been made, each of the FIR filters is applied to every one of the sensors avail-

able in the waveforms container (symbol wfdata-con) regardless of whether that

sensor is ever to be processed in that particular band.

FIR filters are used to ensure that three performance goals are achieved: (i) there is

no frequency-dependent group delay in the filtered waveforms, (ii) the in-band

amplitude response is flat to within +/- 0.3 dB, has unity gain, and the highest out-

TABLE 188: FUNCTIONAL INTERFACE OF INFRA-FIR-FILTER-DATA

Argument Name Usage Type Description

wfdata-con input container wfdata objects

beam-rec-con input container beam-recipe objects

infra-rec-obj input GObj infrasonic detection
processing recipe object

n/a returned value container of
containers

beam objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
of-band response is at least 50 dB down, and (iii) the transition regions from in-

band to stop-band are monotonically decreasing and less than 20 mHz wide at a

sample rate of 20 samples per second. These attributes are important for preserv-

ing phase coherence and for avoiding contamination from nearby strong and spa-

tially coherent spectral features.

The output from this function is a container of containers of beam objects. Each

distinct spectral processing band has an inner container. This inner container holds

all of the beam objects, one for each sensor. The data vector referenced by these

beam objects contains only the FIR bandpass-filtered waveforms for a single sen-

sor; all other vectors referenced by the beam object for the given sensor are null.

All of the inner containers, one for each distinct processing band, are held within

the returned outer container (symbol bpf-con-con).

Cross - co r re l a te Wave fo rms [12 .3 .2]

This subprocess generates sequences of normalized cross-correlation functions

from the FIR bandpass-filtered waveforms. This subprocess is implemented by the

DFX/libinfra function infra-cross-correlate-pairs. This function is called

by Scheme language code such as:

(set! ncc-con-con (infra-cross-correlate-pairs

 bpf-con-con beam-rec-con infra-rec-obj))

The function requires three arguments, which are described in Table 189.

TABLE 189: FUNCTIONAL INTERFACE OF INFRA-CROSS-CORRELATE-PAIRS

Argument Name Usage Type Description

bpf-con-con input container of
containers

beam objects

beam-rec-con input container beam-recipe objects

infra-rec-obj input GObj infrasonic detection
processing recipe object

n/a returned value container of
containers

normalized cross-
correlation objects
369

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

370

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The determination of which sensor pairs are to be cross-correlated for each spectral

processing band is based upon an evaluation of the beam groups and beam recipes

in the beam-recipe container (symbol beam-rec-con). The processing-window time-

duration and the update-time interval between successive cross-correlation pro-

cessing windows is governed by the infrasonic detection processing recipe object

(symbol infra-rec-obj). The lag extent of each normalized cross-correlation function

is the same for every sensor pair in every processing band for a given beam-recipe

container (symbol beam-rec-con), bandpass-filtered waveforms container, and infra-

sonic detection processing recipe object. This lag extent is defined by the longest

baseline separation distance among the sensors in the waveform container, the

maximum magnitude-slowness that can be generated by the beam recipes, and

the slowness-refinement extent required in the infrasonic detection processing rec-

ipe. The output from this function is a container of normalized cross-correlation

containers (symbol ncc-con-con). Each distinct filter band has an inner container.

Within this inner container are all of the normalized cross-correlation objects, one

for each sensor pair for each time position (epoch) of the processing window.

Within each inner container the sequence of normalized cross-correlation objects is

as follows:

first epoch: first pair, second pair, third pair, ..., p-th pair;

second epoch: first pair, second pair, third pair, ..., p-th pair;

…;

n-th epoch: first pair, second pair, third pair, ..., p-th pair.

All of the inner containers are held within the returned outer container.

Genera te S lowness P l anes [12 .3 .3]

This subprocess generates sequences of slowness planes by combining all the nor-

malized cross-correlation pairs for a given processing band, beam group, and pro-

cessing-time window. This subprocess is implemented by the DFX/libinfra function

infra-generate-slowness-planes-cc. This function is called by Scheme lan-

guage code such as:
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
(set! slplcc-con-con (infra-generate-slowness-planes-cc

 ncc-con-con beam-rec-con infra-rec-obj))

The function requires three arguments, which are described in Table 190.

Each slowness plane is sampled in azimuth and magnitude-slowness in accordance

with the beam recipes (symbol beam-rec-con). Each beam recipe specifies an azi-

muth and magnitude-slowness that define a two-dimensional vector-slowness

value. For a given vector-slowness, the arrival time of a plane wave at each sensor

is defined precisely. The method of combining the normalized cross-correlation

functions into the detection statistic is defined by the integer-valued combination-

criterion parameter within the infrasonic detection processing recipe (symbol infra-

rec-obj). The default value for this parameter specifies the arithmetic mean of the

time-aligned normalized cross-correlation functions. This detection statistic is con-

verted to an equivalent signal-to-noise ratio by the fixed transformation

(snr)e = ncc / (1 - ncc)

where ncc is the normalized cross-correlation value (a real-valued number between

-1 and 1). The foregoing transformation only is applied for ncc values zero or larger

and, in fact, values smaller than approximately 0.2 to 0.3 are of no interest to

infrasonic signal processing applied to airborne signals from distant sources. Thus,

TABLE 190: FUNCTIONAL INTERFACE OF INFRA-GENERATE-SLOWNESS-
PLANES-CC

Argument Name Usage Type Description

ncc-con-con input container of
containers

normalized cross-
correlation objects

beam-rec-con input container beam-recipe objects

infra-rec-obj input GObj infrasonic detection
processing recipe class

n/a returned value container of
containers

slowness-plane objects
371

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

372

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
the default arithmetic mean of time-aligned normalized cross-correlation function

populates the slowness plane with the spatial-coherence detection statistic, (snr)e,

at each hypothesized sample of vector-slowness (azimuth, magnitude-slowness).

For a typical processing interval (a few tens of minutes in total duration) the nor-

malized cross-correlation functions are generated for dozens to hundreds of suc-

cessive epochs. For each processing epoch, a slowness plane is generated for each

combination of filter band and beam group required in the beam-recipe container.

Thus, the generation of a slowness-plane populates a six-dimensional space; three

explicit dimensions, time (processing epochs), frequency (filter band), and space

(beam-group). And there are three intrinsic dimensions within each slowness

plane, azimuth, magnitude-slowness, and detection-statistic value, (snr)e, at that

azimuth and magnitude-slowness (for that “group,” in that “band,” over that

“epoch”).

The PDS is the collection of slowness planes for the given filter-band and beam-

group combinations for all the successive epochs in the overall processing interval.

The PDS is treated as a three-dimensional space where the fundamental entity is

the slowness plane (in reality, each slowness plane is itself a three-dimensional

entity). The output from this function is a container of slowness-plane containers

(symbol slplcc-con-con). Each distinct filter band has an inner container. Within this

inner container are all of the slowness-plane objects for a given band, one for each

beam-group for each epoch. Within each inner container the sequence of slow-

ness-plane objects is as follows:

first epoch: first beam-group, second beam-group,
third-beam group, …, g-th beam-group;

second epoch: first beam-group, second beam-group,
third beam-group, …, g-th beam-group;

…;

n-th epoch: first beam-group, second beam-group,
third beam-group, …, g-th beam-group.

All of the inner containers are held within the returned outer container.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
Eva lua te and Refine S lowness
P l anes [12 .3 .4]

This subprocess evaluates each of the slowness planes to determine if there is evi-

dence of detection of an infrasonic plane wave based upon the level of spatial

coherence exhibited. This subprocess is implemented by the DFX/libinfra function

infra-peak-eval-slow-planes. This function is called by Scheme language

code such as:

(set! sbcc-con-con (infra-peak-eval-slow-planes

 slplcc-con-con ncc-con-con beam-rec-con infra-rec-obj))

The function requires four arguments, which are described in Table 191.

Each slowness plane for a given processing epoch, band, and beam-group is pro-

cessed and evaluated on its own merits without regard to other bands or beam-

groups and without regard to preceding or following epochs. For each slowness

plane a score-board object (symbol sbcc-con-con) is created. A score board is a con-

cise summary of a slowness plane. The processing algorithm is as follows:

TABLE 191: FUNCTIONAL INTERFACE OF INFRA-PEAK-EVAL-SLOW-
PLANES

Argument Name Usage Type Description

slplcc-con-con input container of
containers

slowness-plane objects

ncc-con-con input container of
containers

normalized cross-
correlation objects

beam-rec-con input container beam-recipe objects

infra-rec-obj input GObj infrasonic detection
processing recipe object

n/a returned value container of
containers

score-board objects
373

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

374

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
1. The first step of this subprocess is to develop candidate peaks in each

slowness plane. A picket in the slowness plane is characterized by three

coordinates: the level of spatial coherence and the azimuth and magni-

tude-slowness on the slowness plane. Each picket of the slowness plane

that is not on the edge of the slowness plane is compared with its four

nearest neighbors. Only those pickets whose value of (snr)e (the detec-

tion statistic) exceeds all four nearest neighbors are candidates for further

processing; these are candidate peaks.

2. The second step of this subprocess is to compare the peaks to the local

threshold value. If there are candidate peaks, each one is compared with

the threshold value of the beam-recipe object that produced that peak’s

picket; specifically, a fixed fraction of the snr value in the beam recipe for

that (azimuth, magnitude-slowness). The default value of the fixed frac-

tion is 0.7. Even if no candidate peak passes the threshold test, the single

best (highest value of [snr]e) peak is still accepted for further processing.

3. The third step of this subprocess is to sort the list of candidate peaks by

the (snr)e value.

4. The fourth step of this subprocess is to reject candidate peaks that are

too close in slowness to one another. That is, the candidate peak with the

best value of (snr)e is accepted for further processing, then the list is

searched for the next best candidate peak whose slowness distance from

those candidate peaks already accepted for further processing is greater

than a specified criterion. Candidate peaks deemed too close to an

accepted candidate peak are dropped from further consideration. This

process is complete when each candidate peak originally on the list has

either been retained for further processing or dropped because it was too

close in slowness to a candidate peak of higher (snr)e value.

5. The fifth step of this subprocess is to generate refinement slowness

planes. Each candidate peak on this list is refined. That is, the vector-

slowness coordinates of the peak constitute the center of a highly sam-

pled (in vector-slowness) slowness plane of limited slowness extent.

Within this refined slowness plane the vector-slowness coordinates of the

picket with locally maximum value of (snr)e are sought. The detection
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
statistic is also better quantified because the value of vector-slowness

used in the time-alignment of normalized cross-correlation functions is

better matched to those of the incident plane wave. In addition, the

refinement slowness plane allows the widths of the maximal peak to be

estimated in both azimuth and magnitude-slowness directions. The

refined peaks are sorted with respect to the refined (snr)e values. Up to

six refined peaks, those with the highest (snr)e values above their snr

thresholds, are output to a score-board object. Even if no refined peak

exceeds its snr threshold, information about the highest refined peak is

included in the score-board object for that slowness plane. The score

board contains a field indicating the number of candidate detections out-

put (one for each above-threshold refined peak). In addition, it contains

the vector-slowness coordinates, the candidate peaks’ widths, and (snr)e
value of each candidate peak, as well as some other measures.

Because the slowness-plane objects and score-board objects have a one-to-one cor-

respondence, a container of score-board containers is returned by infra-peak-

eval-slow-planes. Each distinct filter-band has an inner container. Within this

inner container are all of the score-board objects from that filter band, one for each

beam-group for each epoch. The sequence of score-board objects within each

inner container is as follows:

first epoch: first beam-group, second beam-group,
third beam-group, …, g-th beam-group;

second epoch: first beam-group, second beam-group,
third-beam group, …, g-th beam-group;

…;

n-th epoch: first beam-group, second beam-group,
third beam-group, …, g-th beam-group.

All of the inner containers are held within the returned outer container.
375

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

376

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Deta i l ed Desc r ip t ion o f Genera te
Coherence Traces a s Beams [12 .4]

In IDC operations the results of the InfraDet application are reviewed by human

analysts who examine the waveforms (via ARS) in the vicinity of actual detections

as well as in time intervals where a detection should exist if an hypothesized event

were detected on the given sensor. To provide the analyst with some mechanism

for knowing whether infrasonic signals were detectable at a given infrasonic array

station, a time series of the level of spatial coherence at the given station is made

available in the form of a beam, referred to as a coherence trace, which can be dis-

played alongside the waveforms for the given station. Where this coherence trace

exhibits sufficiently high levels, infrasonic plane waves may have been present. In

addition to the level of spatial coherence, two additional traces are available. These

exhibit a time series of the azimuth of the source and a time series of the magni-

tude of the trace velocity of the plane wave. (During intervals of genuine infrasonic

signal reception, the values in these latter coherence traces tend to stabilize at the

azimuth of the source and the inverse magnitude-slowness of the source.)

The process Generate Coherence Traces as Beams generates and stores these coher-

ence traces. Figure 43 shows the architecture of the process, which consists of

three subprocesses: (i) generate a coherence trace from score boards, (ii) generate

a dbbeam object, and (iii) write a wfdisc record, including indicative information to

the wfdisc database table and a binary “.w” file of time-series samples to the UNIX

filesystem. These subprocesses are implemented by one DFX/libinfra function, one

DFX/libio function, and a global Scheme function. The process Generate Coherence

Traces as Beams has as its output a record to the wfdisc database table and a corre-

sponding “.w” file for each of the three coherence traces generated for each pro-

cessing time interval and station.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
FIGURE 43. ARCHITECTURE OF GENERATE COHERENCE TRACES AS BEAMS

The following subprocesses shown in Figure 43 are described in this section:

■ Generate Coherence Trace from Score Boards [12.4.1]

■ Generate dbwfdisc Object [12.4.2]

■ Write wfdisc Record [12.4.3]

Genera te Coherence Trace f rom
Score Boa rds [12 .4 .1]

This subprocess generates a time series of selected parameters extracted from the

score boards, which were produced while generating the PDS. Each time series is

reformatted as a beam object, which can be displayed by ARS. This subprocess is

implemented by the DFX/libinfra function infra-beam-from-score-boards.

This function is called by a Scheme language code such as:

score-board
container of
containers

-score-boards

12.4.1

infra-beam-from

Coherence Trace
Generate

Score Boards

-beam

12.4.2

write-db

dbwfdisc
Generate

Object

-container-db

12.4.3

submit

wfdisc
Write

wfdisc

Return

M Db

from Record

waveformsD
377

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

378

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
(set! y-beam (infra-beam-from-score-boards sbcc-con-con

 type name beam_id))

The function requires four arguments, which are described in Table 192.

This function reads the container of score-board containers and, for each epoch,

forms a real-valued scalar from a numerical attribute specified by the character-

string name in the score-board object. The time series of this real-valued scalar is

transformed into a beam object. The channel name in the beam object is the char-

acter-string beam_id. Where the number of processing bands/beam-groups yields

more than a single score-board object for each epoch, more than a single datum

exists that can to be attributed to the coherence trace at each time sample. For

each given epoch, two mechanisms are available for transforming the specified

numerical attribute among the set of score-board objects into a single real-valued

scalar datum. One method selects the value of the parameter from that score-

board object with the highest (snr)e. This is specified by setting the symbol type to

TABLE 192: FUNCTIONAL INTERFACE OF INFRA-BEAM-FROM-SCORE-
BOARDS

Argument
Name Usage Type Description

sbcc-con-con input container of
containers

score-board objects

type input character-string type of selection where more
than a single datum exists per
time sample: either max or
avg

name input character-string name of the parameter in the
score-board objects to be
turned into a beam: for
example, az_mean, f_stat, …

beam_id input character-string this beam’s designation in dis-
plays such as ARS

n/a returned value GObj beam object
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
max (see Table 192). The other method uses the weighted average, (snr)e, being

the weight) of the specified parameter among the set of score boards available for

each processing epoch. In this case symbol type is set to avg (see Table 192).

The function infra-beam-from-score-boards returns a beam object.

Genera te dbwfd i s c Ob jec t [12 .4 .2]

This subprocess writes the time series of beam data as a binary file to the UNIX file-

system in the appropriate directory with the appropriate filename with “.w” exten-

sion. It also generates a dbwfdisc object with appropriate information about the

beam including the assignment of a unique waveform identification number. This

subprocess is implemented by the DFX/libio function write-db-beam. This func-

tion is called by a Scheme language code such as:

(set! db-y-wfdisc (write-db-beam db-conn-obj y-beam wfid))

The function requires three arguments, which are described in Table 193.

The dbbeam object (symbol db-y-beam) is put into a dbbeam container by the glo-

bal Scheme function insert-container. The global Scheme functions say-db-

connection and query-for-lastid are used to supply the database-connec-

tion object and the unique waveform-identification number. This function returns a

beam-associated dbwfdisc object to be submitted to the wfdisc database table.

TABLE 193: FUNCTIONAL INTERFACE OF WRITE-DB-BEAM

Argument
Name Usage Type Description

db-conn-obj input GObj database-connection object

y-beam input GObj beam object

wfid input integer unique waveform identifica-
tion number for this coher-
ence trace

n/a returned value GObj dbwfdisc object
379

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

380

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Wri te wfd i s c Record [12 .4 .3]

This subprocess submits the dbwfdisc object produced in the Generate dbwfdisc

Object [12.4.2] process to the wfdisc database table for output. The subprocess is

implemented by three global Scheme functions: create-keyed-list-con-

tainer, insert-container, and submit-container-db. The last of these

functions is the most significant and is called by Scheme language code such as:

(submit-container-db db-y-wfdisc-con table-name)

The function requires two arguments, which are described in Table 194.

This subprocess first creates a dbwfdisc container via the global Scheme function

create-keyed-list-container. It then inserts the dbwfdisc object into the

dbwfdisc container via the global Scheme function insert-container. Finally, it

writes the dbwfdisc container (symbol db-y-wfdisc-con) to the database to the

table whose name is given by the symbol table-name. The local Scheme function

depart-with-grace is used to return a warning message if the container db-y-

wfdisc-con to be submitted to the database is null or if the submission process fails.

Where there is a failure, the function depart-with-grace also rolls back the

database to its state at the time of its last commit.

TABLE 194: FUNCTIONAL INTERFACE OF SUBMIT-CONTAINER-DB (WFDISC)

Argument Name Usage Type Description

db-y-wfdisc-con input container dbwfdisc objects

table-name input character-string database table name
where header infor-
mation about this
coherence trace is to
be written

n/a returned value logical indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
Deta i l ed Desc r ip t ion o f Remove
Redundant Detec t ions [12 .6]

InfraDet has the potential for generating detections for each processing interval

and station for which it is invoked. Although InfraDet is typically invoked for a

sequence of adjacent "abutting" processing intervals, whose nominal start- and

end-times are advanced by a fixed amount equal to the time duration of any given

interval, several factors require that the waveforms acquired and processing per-

formed in any given processing interval start earlier than the nominal start-time

and run later than the nominal end-time. Thus, successive processing intervals are

overlapped in time. Because of this overlap, the same signal may be detected at

the end (in the overlap region) of a given processing interval and re-detected in the

start (in the overlap or even the nominal processing region) of the next processing

interval. Downstream processing assumes that there will be only one record in the

arrival table for a physical arrival. Consequently, InfraDet performs processing to

eliminate both the redundant detections developed within a given single process-

ing interval as well as detections that are redundant relative to previous processing

intervals.

The process Remove Redundant Detections accomplishes this. Figure 44 shows the

architecture of the process. First, it passes through two subprocesses that create

dbcontainers and extract parameters. Next it enters a loop over the newly gener-

ated infrasonic detections. This loop consists of four subprocesses, which create

dbobjects, set arids in dbobjects, put dbobjects into dbcontainers, and delete

redundant detections, respectively. Finally, the process screens for existing entities

(dbarrival as well as corresponding dbdetection and dbinfra_features objects).

The following subprocesses shown in Figure 44 are described in this section:

■ Create dbcontainers [12.6.1]

■ Extract Parameters [12.6.2]

■ Create dbobjects [12.6.3]

■ Set arids into dbobjects [12.6.4]

■ Put dbobjects into dbcontainers [12.6.5]

■ Delete Redundant Detections [12.6.6]
381

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

382

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
■ Screen for Existing Entities [12.6.7]

FIGURE 44. ARCHITECTURE OF REMOVE REDUNDANT DETECTIONS

M

12.6.2

Parameters
Extract Loop over

infra-detections

-container

12.6.5

insert

dbobjects
Put

into
dbcontainers

-by-existing

12.6.7

screen-infra-dbentities

Existing
Screen for

Entities

12.6.3

Create dbobjects

-det-objects

12.6.6

delete-redundant

Redundant
Delete

Detections

lastidDb

set-gobj-attr

12.6.4

query-for-lastid

into
Set arids

dbobjects

next
infra-

detection

create-dbarrival
-from-detection,

create-dbdetection
-from-detection, …

no
more

infra-recipe object,
InfraDetection
container of
containers

-list-container

12.6.1

create-keyed

dbcontainers
Create

Return
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
Crea te dbconta ine r s [12 .6 .1]

This subprocess creates containers to hold the dbarrival, dbdetection, and

dbinfra_features objects created from each infra-detection object produced by the

coincidence detector. It is implemented by inline Scheme code. The relevant global

Scheme functions include:

create-keyed-list-container

say-db<XXX>-object-class

as well as the DFX/libutil Scheme function:

make-gobj-name

These functions are applied to create the dbcontainers listed in Table 195.

This subprocess uses make-gobj-name and say-db<XXX>-object-class to

provide unique character-string names for the given container and to provide a

definition of the object class (that is symbolized as db<XXX>) that the container is

intended to hold, respectively.

Ex t rac t Pa ramete r s [12 .6 .2]

This subprocess extracts the parameters listed in Table 196 from the CVAR datas-

tore and from the infrasonic detection processing recipe.

TABLE 195: DBCONTAINERS CREATED BY CREATE DBCONTAINERS

Symbol Description

dbarrival-con container of dbarrival objects

dbdetection-con container of dbdetection objects

dbinfra_features-con container of dbinfra_features objects
383

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

384

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The three limit parameters, azi-limit, slow-limit, and redundancy-time-limit, are

each set to 50% of the azimuth-criterion, 50% of the slowness-criterion, and 50%

of the coherent-integration-time parameters held in the infrasonic detection pro-

cessing recipe.

Crea te dbob jec t s [12 .6 .3]

Within the loop over infra-detection objects, this subprocess uses three DFX/libinfra

functions and two DFX/libdb functions to create dbobjects of the dbarrival, dbde-

tection, and dbinfra_features classes from each infra-detection object. The three

DFX/libinfra functions are:

TABLE 196: PARAMETERS EXTRACTED BY EXTRACT PARAMETERS

Symbol Source Type Description

sta CVAR character-
string

station code

start-time CVAR real start-time of current processing
interval

end-time CVAR real end-time of current processing
interval

amplitude-table CVAR character-
string

name of amplitude table in data-
base

arrival-table CVAR character-
string

name of arrival table

detection-table CVAR character-
string

name of detection table

infra_features-table CVAR character-
string

name of infra_features table

azi-limit infra-rec-obj real limit for matching azimuths

slow-limit infra-rec-obj real limit for matching magnitude-
slowness

redundancy-time-limit infra-rec-obj real limit for matching arrival time
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
create-GObjDet-from-GObjInfraDet

create-GObjDbInfra_Features-from-GObjInfra_Feat

create-GObjInfra_Feat-from-GObjInfraDet

The two DFX/libdb functions are

create-dbarrival-from-detection

create-dbdetection-from-detection

First, a detection object is extracted from the infra-detection object via create-

GObjDet-from-GObjInfraDet. Then a dbarrival object and a dbdetection object

are extracted from the detection object. Finally, an infra_features object is extracted

from the infra-detection object via create-GObjInfra_Feat-from-GObjIn-

fraDet. This infra_features object is transformed to a dbinfra_features object via

create-GObjDbInfra_Features-from-GObjInfra_Feat. The fields in a

dbarrival object correspond to the fields in an arrival table; the fields in a dbdetec-

tion object correspond to the fields in a detection table; and the fields in a

dbinfra_features object correspond to the fields in an infra_features table (see

[IDC5.1.1Rev2]).

Set a r id s i n to dbob jec t s [12 .6 .4]

Within the loop over infra-detection objects, this subprocess puts the same unique

arrival identification number (symbol arid) into each of the dbarrival, dbdetection,

and dbinfra_features objects that were derived from a given single infra-detection

object. It uses the global Scheme function query-for-lastid and the inline

common libgobj Scheme function set-gobj-attr. In addition, it sets this same

arid value into the infra-detection object that was used to derive the three dbob-

jects.

Put dbob jec t s i n to dbconta ine r s [12 .6 .5]

Within the loop over infra-detection objects, this subprocess uses the global

Scheme function insert-container to insert each of the three types of dbob-

jects derived from each infra-detection object into the corresponding class of

dbcontainers.
385

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

386

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Dele te Redundant Detec t ions [12 .6 .6]

Within the loop over infra-detection objects, this subprocess deletes infrasonic

detections that are closer in time to one another than the allowed value of redun-

dancy-time-limit. This subprocess is implemented by the local Scheme function

delete-redundant-det-objects. This function is called by Scheme language

code such as:

(set! out-infra-det-con (delete-redundant-det-objects

 infra-det-con redundancy-time-limit))

The function requires two arguments, which are described in Table 197.

Within the loop over infra-detection objects, this subprocess compares the arrival

times of successive detections. If two successive detections are closer in time than

the time criterion (symbol redundancy-time-limit) then the detection with the larger

value of coherent snr (that is, [snr]e) is retained, and the other detection is deleted

from the container. The function delete-redundant-det-objects returns a

container of infra-detection objects that has no two successive detections closer in

arrival time than the time criterion. The redundant infra-detection objects are

deleted from the input container as well.

TABLE 197: FUNCTIONAL INTERFACE OF DELETE-REDUNDANT-DET-OBJECTS

Argument Name Usage Type Description

infra-det-con input and output container infra-detection objects

redundancy-time-
limit

input real time difference limit to
consider two successive
detections redundant

n/a returned value container infra-detection objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
Sc reen fo r Ex i s t i ng En t i t i e s [12 .6 .7]

This subprocess screens the dbarrival, dbdetection, and dbinfra_features objects for

each infrasonic detection for the presence of a sufficiently similar infrasonic detec-

tion already in the database. To do so, it first screens the dbarrival objects for suffi-

ciently similar arrivals in the arrival table. Those dbarrival objects deemed

redundant are deleted from the dbarrival container, and the corresponding input

infra-detection object has its arid attribute set to the integer value -1. This allows

for simple handling of the amplitude estimation processing, which is discussed in

the “Detailed Description of Estimate Signal Amplitude [12.7]” on page 391, spe-

cifically the subsection “Extract Parameters [12.7.1]” on page 393. This subpro-

cess is implemented by three local Scheme functions:

screen-infra-dbarrivals-by-existing

screen-infra-dbdetects-by-existing

screen-infra-dbinfra_features-by-existing

The first function is called by Scheme language code such as:

(set! out-dbarrival-con

 (screen-infra-dbarrivals-by-existing sta start-time

 end-time redundancy-time-limit azi-limit slow-limit

 in-dbarrival-con infra-det-con-con))

The function requires eight arguments, which are described in Table 198.

TABLE 198: FUNCTIONAL INTERFACE OF SCREEN-INFRA-DBARRIVALS-BY-
EXISTING

Argument Name Usage Type Description

sta input character-string station code of station
currently being processed

start-time input real start-time of current pro-
cessing interval

end-time input real end-time of current pro-
cessing interval
387

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

388

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The function screen-infra-dbarrivals-by-existing performs a query to

the arrival table to obtain arrivals within the processing interval, adjusted for extra

waveform data at each end of the processing interval, for this station. It then loops

over the list of database arrivals. For each arrival found in the database it loops

over the newly generated arrivals in the input dbarrival container. It compares the

arrival times, azimuths, and magnitude-slowness values for each database arrival

with each newly generated arrival. If the following three conditions are met,

■ the arrival times are within the time criterion (symbol redundancy-time-

limit)

■ the azimuths are within the azimuth criterion (symbol azi-limit)

■ the magnitude-slownesses are within the magnitude-slowness criterion

(symbol slow-limit)

redundancy-time-
limit

input real time difference limit to
consider two successive
detections redundant

azi-limit input real azimuthal difference limit
to consider two succes-
sive detections redun-
dant

slow-limit input real magnitude-slowness dif-
ference limit to consider
two successive detec-
tions redundant

in-dbarrival-con input and output container dbarrival objects

infra-det-con-con input and output container of
containers

infra-detection objects

n/a returned value container dbarrival objects

TABLE 198: FUNCTIONAL INTERFACE OF SCREEN-INFRA-DBARRIVALS-BY-
EXISTING (CONTINUED)

Argument Name Usage Type Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
then the newly generated dbarrival object is deleted from the input dbarrival con-

tainer, and the arid attribute in the matching input infra-detection object is set to

the integer value -1.

The function screen-infra-dbarrivals-by-existing returns a dbarrival

container whose contents have no matches in the arrival database table for the

given station and processing time interval. For more information see “Database

Operations” on page 40.

After the dbarrival container has been screened for existing arrivals, the subprocess

Screen for Existing Entities eliminates the appropriate dbdetection and

dbinfra_features objects from the dbdetection container and the dbinfra_features

container, respectively. Two local Scheme functions are used to accomplish this:

screen-infra-dbdetects-by-existing

screen-infra-dbinfra_features-by-existing

These two functions are applied in the same fashion. The function screen-

infra-dbdetects-by-existing is called by a Scheme language code such as:

(set! out-dbdetect-con

 (screen-infra-dbdetects-by-existing in-dbarrival-con

 in-dbdetect-con))

The function requires two arguments, which are described in Table 199.

TABLE 199: FUNCTIONAL INTERFACE OF SCREEN-INFRA-DBDETECTS-BY-
EXISTING

Argument Name Usage Type Description

in-dbarrival-con input container dbarrival objects

in-dbdetect-con input and output container dbdetection objects

n/a returned value container dbdetection objects
389

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

390

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This function loops over the dbdetection container. For each dbdetection object it

loops over the dbarrival container (which has had the dbarrival objects correspond-

ing to existing arrivals deleted from it). If the arid parameter of the dbdetection

object does not match the arid parameter of any dbarrival object, then the dbdetec-

tion object is deleted from the dbdetection container. The function screen-

infra-dbdetects-by-existing returns a dbdetection container that has no

matches in the detection table.

The function screen-infra-dbinfra_features-by-existing is called by

Scheme language code such as:

(set! in-dbinfra_features-con

 (screen-infra-dbinfra_features-by-existing

 in-dbarrival-con in-dbinfra_features-con))

The function requires two arguments, which are described in Table 200.

This function loops over the dbinfra_features container. For each dbinfra_features

object it loops over the dbarrival container. If the arid parameter of the

dbinfra_features object does not match the arid parameter of any dbarrival object,

then the dbinfra_features object is deleted from the dbinfra_features container. The

function screen-infra-dbinfra_features-by-existing returns a

dbinfra_features container whose contents have no matches in the infra_features

table.

TABLE 200: FUNCTIONAL INTERFACE OF SCREEN-INFRA-DBINFRA_FEATURES-
BY-EXISTING

Argument Name Usage Type Description

in-dbarrival-con input container dbarrival objects

in-dbinfra_features-con input and output container dbinfra_features objects

n/a returned value container dbinfra_features objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
Deta i l ed Desc r ip t ion o f E s t imate
S i gna l Ampl i tude [12 .7]

InfraDet produces estimates of the waveform amplitude in the vicinity of each

declared detection. It uses the same amplitude measurement library functions

employed in SeisDet. However, in contrast with the seismic approach where the

estimation is applied to beamformed data, the infrasonic approach is applied to

each sensor's waveforms on an individual basis. The reported amplitude is based

on a selection of the most representative measurement from among the individual

sensor results. The process Estimate Amplitude, implemented via the local Scheme

function measure-infra-amplitude, is used to perform the waveform ampli-

tude estimation for InfraDet. Figure 45 shows the architecture of the process. First

it extracts parameters. Then it enters a nested pair of loops over the infrasonic

detections (outer loop) and over the individual sensors (inner loop) used to

develop this detection at this infrasonic station. Within the inner loop, for each

individual sensor, a suitable single sensor beam recipe is generated and the ampli-

tude estimation is performed. These activities are accomplished via the subpro-

cesses Create Beam-recipe Container and Estimate Amplitude. After the inner loop

has run over all relevant sensors and an amplitude estimate has been generated for

each sensor, the subprocess Select Best Measurement (within the outer loop) is

invoked. This subprocess evaluates the set of amplitude estimates and selects the

most representative estimate to be attributed to the correct infrasonic detection.

The subprocess Select Best Measurement then inserts this measurement (in the

form of a dbamplitude object) into a dbamplitude container. When the all non-

redundant infrasonic detections have been processed, the dbamplitude container is

returned.
391

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

392

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 45. ARCHITECTURE OF ESTIMATE SIGNAL AMPLITUDE

The following subprocesses shown in Figure 45 are described in this section:

■ Extract Parameters [12.7.1]

■ Create Beam-recipe Container [12.7.2]

■ Estimate Amplitude [12.7.3]

■ Select Best Measurement [12.7.4]

amplitude-recipe container
infra-recipe object
wfdata container
infra-detection container of containers

12.7.1

Parameters
Extract Loop over

infra-detections

Return

-object-to-report

12.7.4

select-amplitude

Best
Select

Measurement

over
Loop

sensors

-beam-recipe

12.7.2

create-secondary

Beam-recipe
Create

Container

-container

next
infra-detection

no
more

next
sensor

no
more

M

-amplitude

12.7.3

measure

Amplitude
Estimate
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
Ex t rac t Pa ramete r s [12 .7 .1]

This subprocess acquires the parameters required for amplitude estimation process-

ing. It creates a container to hold the dbamp objects created from each infra-detec-

tion object by the coincidence detector. It is implemented by inline Scheme code.

The relevant global Scheme functions include:

create-keyed-list-container

make-gobj-name

say-db<XXX>-object-class

In addition, the name (symbol amplitude-table) of the output amplitude table is

extracted from the CVAR datastore. The local symbol time-error is set to the sta-

time parameter value from the infrasonic detection processing recipe (symbol infra-

rec-obj). Finally, the local symbol time-window-factor is set to unity.

The nested pair of loops is implemented as three nested loops. The outer loop over

detections shown in Figure 45 is actually two nested loops: the first is a loop over

the inner containers of infra-detection objects; the second (interior to the first) is a

loop over the infra-detection objects themselves. The inner-most loop is the loop

over sensors used to generate each given infra-detection object, as shown in Figure

45.

Between the loop over infra-detection objects and the inner loop over sensors, a

variety of parameters are extracted for the current infra-detection object. The

extracted parameters include the symbols described in Table 201.

TABLE 201: PARAMETERS EXTRACTED AND SYMBOLS SET FOR MEASURE-
INFRA-AMPLITUDE

Symbol Source Type Description

time infra-detection object real detection time

arid infra-detection object integer unique arrival identification
number

az-d-o infra-detection object real azimuth (degrees with
respect to North)
393

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

394

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
These local symbols, most of which are unique in value to the current infra-detec-

tion object, are used to create beam-recipe container(s) suitable for the subsequent

infrasonic waveform amplitude estimation processing. If the arid value for the cur-

rent detection object is equal to –1, then the given detection was found to be

redundant and amplitude processing is not performed on this detection.

Crea te Beam-rec ipe Conta ine r [12 .7 .2]

Amplitude estimation in DFX requires the input waveforms to be structured and

conveyed as a beam object. For infrasound, the use of beamformed data is not

desired. Rather, the single-sensor instrument-response corrected waveforms (time-

aligned to correspond to the detection vector-slowness, and bandpass filtered to

the detection band) are the data on which to estimate the signal’s amplitude. The

amplitude estimate is the frequency-response corrected (to account for the band-

pass filtering) arithmetic mean over the single-sensor measurements having

matching measurement times.

sl-d-o infra-detection object real magnitude-slowness (sec-
ond/kilometer)

ts-d-o local computation from
time, time-error, and
time-window-factor

real start-time for window
within which to perform
amplitude estimation

te-d-o local computation from
time, time-error, and
time-window-factor

real end-time for window
within which to perform
amplitude estimation

best-bmrec-obj infra-detection object GObj beam-recipe object

bmrec-bmgrp-con local computation from
best-bmrec-obj

container beam-element objects

num-sensors local computation from
bmrec-bmgrp-con

real number of sensors for cur-
rent infrasonic detection

TABLE 201: PARAMETERS EXTRACTED AND SYMBOLS SET FOR MEASURE-
INFRA-AMPLITUDE (CONTINUED)

Symbol Source Type Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
The most efficient way to cast the input waveforms as a beam object is to perform

the beamforming processing albeit with one major adjustment: the beam recipe

contains a beam group with only a single sensor. Then, the beamforming returns

the waveforms from that sensor, bandpass filtered as required, and slightly shifted

in time as required by the beamsteering. By applying this technique for each sensor

at the infrasonic array station, the measurements can be accomplished on a single

sensor basis. Thus, the objective is to create a beam recipe for each sensor.

The subprocess Create Beam-recipe Container exists within the innermost loop over

sensors. It creates a secondary beam-recipe container consisting of a beam group,

which has only the current sensor and a coherent-beam recipe steered in the vec-

tor-slowness of the current detection. This beam recipe also has the filter parame-

ters set to those values used to obtain the current detection. The single-sensor

beam-element object is created by the local Scheme function create-second-

ary-beam-element-object. This function is called by Scheme language code

such as:

(set! sec-bmelem-obj

 (create-secondary-beam-element-object best-bmrec-obj

 ith-sensor))

The function requires two arguments, which are described in Table 202.

This function extracts the beam-element container from the input best beam-recipe

object (symbol best-bmrec-obj) and then extracts the beam-element object for the

ith-sensor (symbol ith-sensor) from this container. The function create-second-

ary-beam-element-object returns this single-sensor secondary beam-element

TABLE 202: FUNCTIONAL INTERFACE OF CREATE-SECONDARY-BEAM-
ELEMENT-OBJECT

Argument Name Usage Type Description

best-bmrec-obj input GObj beam-recipe object

ith-sensor input integer integer index of current sensor

n/a returned value GObj beam-element object
395

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

396

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
object. Next, the common libgobj Scheme function extract-gobj-attr and

the intrinsic Scheme function set! are used to create a beam-name (symbol sec-

beam-name) from the station name of the single sensor in the secondary beam-ele-

ment object. Finally, the local Scheme function create-secondary-beam-rec-

ipe-container is applied to form the special beam-recipe container that has the

single-sensor beam-element object for this current sensor. This function is called by

Scheme language code such as:

(set! sec-bmrec-con

 (create-secondary-beam-recipe-container best-bmrec-obj

 sec-bmelem-obj sec-beam-name))

The function requires three arguments, which are described in Table 203.

This function constructs a secondary beam-recipe container (symbol sec-bmrec-con)

consisting of this best beam recipe and a beam-element container that contains

only this single-sensor beam-element object (symbol sec-bmelem-obj). All parame-

ters of the single beam-recipe object within the returned beam-recipe container are

set from the corresponding parameters of the best beam-recipe object (symbol

best-bmrec-obj). The beam-name parameter of the single beam-recipe object within

the returned container is set to the symbol sec-beam-name. The beam-azi and

beam-slow parameters of the single beam-recipe object within the returned beam-

recipe container are reset by the inline common libgobj Scheme function set-

TABLE 203: FUNCTIONAL INTERFACE OF CREATE-SECONDARY-BEAM-RECIPE-
CONTAINER

Argument Name Usage Type Description

best-bmrec-obj input GObj beam-recipe object

sec-bmelem-obj input GObj beam-element object for
the current single sensor

sec-beam-name input character-string code of current single
sensor to be used as the
beam-name

n/a returned value container beam-recipe objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
gobj-attr and the global Scheme function nth-container to the values held

by symbols az-d-o and sl-d-o, respectively. Finally, this special beam-recipe object is

referenced in the amplitude-recipe object within the amplitude-recipe container.

This amplitude-recipe object is subsequently applied in the amplitude measurement

process.

Es t imate Ampl i tude [12 .7 .3]

This subprocess measures the amplitudes. It exists within the innermost loop over

sensors. It generates an estimate of the signal’s amplitude from the bandpass-fil-

tered waveforms for the current single sensor in accordance with the first ampli-

tude-recipe object within the amplitude-recipe container. This estimation is

performed by the DFX/libamp function measure-amplitude. This function is

called by a Scheme language code such as:

(set! amp-obj (measure-amplitude wfdata-con (nth-container

 0 amp-rec-con) ts-d-o te-d-o))

The function requires four arguments, which are described in Table 204.

TABLE 204: FUNCTIONAL INTERFACE OF MEASURE-AMPLITUDE

Argument Name Usage Type Description

wfdata-con input container wfdata objects

(nth-container 0
amp-rec-con)

input GObj amplitude estimation processing recipe
object: amplitude estimation processing
recipe to be applied

ts-d-o input real start-time of window within which to
perform waveform amplitude estimation

te-d-o input real end-time of window within which to per-
form waveform amplitude estimation

n/a returned
value

GObj amplitude object
397

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

398

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This function estimates the peak-to-trough amplitude, period, and time-of-esti-

mate on a single cycle “lobe” of the bandpass-filtered waveforms for the current

single sensor. In contrast with the FIR bandpass filtering applied to the waveforms

used to establish detection, the bandpass filtering for amplitude estimation is per-

formed in accordance with traditional IIR libfilter filtering algorithms (see

[IDC5.2.1] for more information on filtering waveforms). The amplitude estimation

is confined to the processing window defined by start-time symbol ts-d-o and end-

time symbol te-d-o.

The estimated peak-to-trough amplitude is the maximum single-cycle value of

peak-to-trough amplitude within the processing window. The returned object

(symbol amp-obj) is an amplitude object. It is immediately transformed into a

dbamplitude object by the local Scheme function create-infra-detection-

dbamplitude-from-amp, and the returned dbamplitude object (symbol dbamp-

obj) is put into a dbamplitude container (symbol dbamp-con).

Se lec t Bes t Measu rement [12 .7 .4]

This subprocess takes the single-sensor amplitude measurements for each sensor at

the infrasonic station and returns the “best” measurement (the one to be

reported). This subprocess exists between the innermost loop over sensors and the

middle loop over infra-detection objects. It evaluates the dbamplitude container

returned by the previous subprocess Estimate Amplitude. For the given current

infrasonic detection, the evaluation starts by calculating the arithmetic mean of the

amplitude measurements over those stations whose measurement times agree

within the time-error of the original detection time. The single amplitude measure-

ment that is closest to this mean amplitude is the amplitude measurement that is

returned by the selection process. In fact, this single sensor’s entire dbamplitude

object is the dbamplitude object attributed to this infrasonic detection. This selec-

tion process is implemented by the local Scheme function select-dbampli-

tude-object-to-report. This function is called by a Scheme language code

such as:

(set! out-dbamp-obj (select-dbamplitude-object-to-report

 dbamp-con time time-error))
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
The function requires three arguments, which are described in Table 205.

This function returns a dbamplitude object (symbol out-dbamp-con), which corre-

sponds to the amplitude table (see [IDC5.1.1Rev2]).

In support of rational human analyst review, the returned estimate of amplitude in

this application is that single-sensor amplitude that is closest to the arithmetic

mean of the amplitude estimates whose amplitude measurement times agree. The

channel stored in the amplitude table record contains the station name of the single

sensor whose amplitude estimate is reported.

Deta i l ed Desc r ip t ion o f Wr i te Non-
Redundant Detec t ions [12 .8]

InfraDet performs processing to eliminate both the redundant detections devel-

oped within a given single processing intervals as well as detections that are redun-

dant relative to previous processing intervals. When the detections developed in a

given processing interval for a given infrasonic station have had any redundant or

already existing (in the database) members deleted, if any non-redundant detec-

tions remain, these are submitted to the appropriate tables of the database.

TABLE 205: FUNCTIONAL INTERFACE OF SELECT-DBAMPLITUDE-OBJECT-TO-
REPORT

Argument Name Usage Type Description

dbamp-con input container dbamplitude objects

time input real time of the peak of the energy
packet underlying the current
infrasonic detection

time-error input real error estimate in the foregoing
parameter (time)

n/a returned value GObj dbamplitude object
399

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

400

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The process Write Non-Redundant Detections accomplishes this. Figure 46 shows

the architecture of the process. First, the process tests for an empty input container

of db“entities”, which are to be written. It then writes the container of db“enti-

ties”, tests for unsuccessful writes, and rolls back the database if the write encoun-

tered any error.

The following subprocesses shown in Figure 46 are described in this section:

■ Test for Empty Input Container [12.8.1]

■ Write Container [12.8.2]

■ Test for Unsuccessful Write [12.8.3]

■ Roll Back Database [12.8.4]

Tes t fo r Empty Input Conta ine r [12 .8 .1]

This subprocess tests the input container of db“entities” (dbarrival, dbdetection,

dbinfra_features, and dbamplitude) to determine if the container is empty. It is

implemented by the inline generic Scheme functions if and null?. If the con-

tainer is empty, the subprocess calls the local Scheme function depart-with-

grace. This function returns a formatted, informative warning message, rolls back

the database via the global Scheme function rollback-db if there have already

been successful writes to the database for this station and processing time interval,

and then suspends further processing in this application and returns control to the

calling program. If the container is not empty, then the subprocess Write Container

is called.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
FIGURE 46. ARCHITECTURE OF WRITE NON-REDUNDANT DETECTIONS

dbarrival container
dbdetection container
dbinfra_features container
dbamp container

M

-db

12.8.2

submit-container

Container
Write

-warning
print

Warning
Issue

Message

Return

Return

XDb

-warning
print

Warning
Issue

Message

12.8.4

rollback-db

Database
Roll Back

no

yes

no yes

X is in turn arrival,
detection, infra_features,
and amp (amplitude)

12.8.3
Test for

unsuccessful

12.8.1
Test for empty
input container

write

(dbX)

Return

no

yesanother
container?

•

401

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

402

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Wri te Conta ine r [12 .8 .2]

This subprocess writes the existing container of db“entities” to the database via

the global Scheme function submit-container-db. This function is called by

Scheme language code such as:

(set! returned-entity (submit-container-db dbÓentityÓ-con

 ÒentityÓ-table))

The function requires two arguments, which are described in Table 206.

This function assumes that the database is opened, and when finished it does not

commit the database. It causes each object within the input container of

db”entity” objects (symbol db”entity”-con) to be written as a record to the data-

base table whose name is indicated by the argument with symbol “entity”-table.

There is a one-to-one correspondence between parameters in the db”entity”

object and attributes (columns) in the database record. If the submission to the

database is successful, submit-container-db returns t; otherwise, it returns

nil.

Tes t fo r Unsuccess fu l Wr i te [12 .8 .3]

This subprocess tests the returned value from the global Scheme function sub-

mit-container-db via the inline intrinsic Scheme functions if and null? to

determine whether or not the write was successful. If the write was not successful,

the local Scheme function depart-with-grace is called. This function returns a

TABLE 206: FUNCTIONAL INTERFACE OF SUBMIT-CONTAINER-DB

Argument Name Usage Type Description

db”entity”-con input container db”entity” objects

“entity”-table input character-string name of database table
in which “entity”
records are stored

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Infrasonic Process ing
formatted, informative warning message, rolls back the database via the global

Scheme function rollback-db if there have already been successful writes to the

database for this site and processing time interval, suspends further processing in

this application, and returns control to the calling program. If the write was suc-

cessful, then the subprocess Test for Empty Input Container is called for the next

container of db”entity” objects to be written to the database. When the dbarrival,

dbdetection, and dbinfra_features have all been written successfully, the database is

“committed” by the global Scheme function commit-db. Thereafter, the subpro-

cess Test for Empty Input Container is called for the last container (the dbamplitude

container) to be written to the database. When the dbamplitude has been written

successfully, the database is again committed by the global Scheme function com-

mit-db.

Ro l l Back Database [12 .8 .4]

This subprocess returns a formatted warning message and rolls back the database

to the state it had just after the most recent commit-db. It is implemented by the

local Scheme function depart-with-grace. This function is called by a Scheme

language code such as:

(set! returned-entity (depart-with-grace message-string

 roll))

The function requires two arguments, which are described in Table 207.

TABLE 207: FUNCTIONAL INTERFACE OF DEPART-WITH-GRACE

Argument Name Usage Type Description

message-string input character-string text of formatted mes-
sage to be returned

roll input integer zero if rollback is not
to be performed, unity
if rollback is to be per-
formed

n/a returned value logical scalar indicates success (t)
or failure (nil)
403

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

404

▼

Chapter 6:

Infrasonic Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This function returns the warning message text referenced by the symbol message-

string. If the argument roll is unity in value, the database is rolled back by the glo-

bal Scheme function rollback-db, further processing in this application is termi-

nated, and control is returned to the calling program; otherwise (roll equal to zero

in value), the database is left in its current state, further processing in this applica-

tion is terminated, and control is returned to the calling program.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 7: Admin i s t r a t i ve
P rocess ing

This chapter describes the detailed design of DFX administrative processing and

includes the following topics:

■ Segment Archiving [13]

■ Quality Control Statistics [14]
e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1 405

S o f t w a r e
I D C D O C U M E N T A T I O N

406
Chapter 7: Admin i s t r a t i ve
P rocess ing

SEGMENT ARCHIV ING [13]

Segment Archiving (SegArch) is a DFX Scheme application that saves origin beams

for all arrivals associated with each of the origins that occur within a given time

interval. The source code resides in the file DFX-segarch.scm. SegArch is typically

called in a post-analysis processing pipeline. It is run by specifying the network,

start-time and end-time, and the DFX-segarch.par file on the command line.

The results of SegArch are written to the wfdisc table and, if desired, the wftag

table.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description includes the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes

■ Detailed Description of Perform Segment Archiving [13.3]
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
Genera l Desc r ip t ion

SegArch is the DFX application that automatically generates and saves origin beams

from seismic arrays based upon the origins in the processing time interval. Because

the waveform time segments and steering information used to form the beams is

derived from event origins, these origin beams can be relied upon to contain the

signal arrival if it is sufficiently energetic.

Arch i tec tu re

SegArch consists of three principal processes (see Figure 47). The application is

implemented by a single pass through two initialization processes followed by a

nested pair of loops in which the third process performs segment archiving. The

first initialization process queries for origins (in the time interval) by filling a con-

tainer with dborigin objects. The process Query For Origins (In Interval) is imple-

mented by query-for-dborigin-container, which, if successful, fills a

container with dborigin objects for all of the seismic origins available for the pro-

cessing time interval. For general information on how database queries are imple-

mented, see “Querying the Database” on page 41. The second initialization

process initializes sites by acquiring all of the site information. It is implemented by

the local Scheme function initialize-net-sites, which follows the general

site initialization model described in “Initializing Sites” on page 46. The outer loop

runs over the origins, the inner loop runs over the stations associated with the

given network, and the process Perform Segment Archiving generates and stores

the origin beams. This process is implemented by the local Scheme function pro-

cess-origins.
407

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

 Ju
n

e
 2

0
0

1
 ID

C
-7

.1
.1

 D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 7

:

A
d

m
in

is
tra

tiv
e

 P
ro

c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

408

over
Loop

sites

ins

t
g

rid

no
more

next
site
FIGURE 47. ARCHITECTURE OF SEGARCH

over
Loop

origins

wfdisc, wftag

13.3

process-orig

Segmen
Perform

Archivin

site and o
Extract

origin

affiliation,
arrival, assoc,
instrument,
origin, sensor,
site, sitechan,
wfdisc

Exit

next
origin

no
more

DbDb Db

13.2

initialize

Site-specific
Initialize

Parameters

-net-sites

13.1

query-for-dborigin

Origins
Query for

(in Interval)

-container

waveformsD

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
I nput /Output

The input CVAR datastore parameters used in the Scheme code are listed in Table

208.

TABLE 208: INPUT PARAMETERS FOR SEGMENT ARCHIVING
PROCESSING

Par Name Source Default Value Description

net command
line

<none> network of station to process

start-time command
line

<none> start-time of the processing inter-
val

end-time command
line

<none> end-time of the processing interval

delta1 par file <none> distance (degrees) separating
regional from teleseismic

delta2 par file <none> intermediate distance (degrees)

data-offset-len par file 50.0 duration of data to add to the ends
of the waveform interval to allow
for filter start-up and taper-off

wfdisc-
extension-len

par file 86400.0 maximum time duration of “.w”
files in which binary format wave-
form time series are stored on the
UNIX filesystem

out-database-
account

par file <none> database account for the output

data-output-
wftag

par file 0 if non-zero, wftag of the output
data

affiliation-table par file affiliation table containing station and net-
work affiliations

in-arrival-table par file arrival input table containing signal arrival
information

in-assoc-table par file assoc input table containing association
information
409

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

410

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
instrument-table par file instrument table containing generic (default)
calibration information about a sta-
tion

origin-table par file origin table containing origin information

sensor-table par file sensor table containing specific calibration
information for physical channels

site-table par file site table containing site-location infor-
mation

sitechan-table par file sitechan table containing station-channel
information

in-wfdisc-table par file wfdisc input table containing waveform
file header and descriptive infor-
mation

out-wfdisc-table par file wfdisc output table containing waveform
file header and descriptive infor-
mation generated by this applica-
tion

out-wftag-table par file wftag output table containing waveform
mapping information generated by
this application

dfx-site-event-
file

par file <none> name of the file containing the
site-specific recipes for generating
the origin beams

origin-output-
beam-tirec-list

par file <none> time-interval recipes for output
beams

origin-observed-
amprec-list

par file <none> amplitude recipes for observed
arrivals/phases for given origins

origin-theoreti-
cal-amprec-list

par file <none> amplitude recipes for theoretical
arrivals

TABLE 208: INPUT PARAMETERS FOR SEGMENT ARCHIVING
PROCESSING (CONTINUED)

Par Name Source Default Value Description
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
All results from this application are written to the database tables described in

Table 209. There are database records as well as files of the time-series samples of

the origin beams, referred to as “.w” files. These “.w” files are written to the UNIX

filesystem in the directory and filenames delineated by the dir and dfile attributes

of the wfdisc table. The directory name is of the form /base/YYYY/JJJ/ where JJJ is

the three-digit Julian day of the year (with lead zeros as required) and YYYY is the

four-digit year for the given input waveforms used to generate the origin beam.

The base directory path is set in the DFX-segarch.par file by the data-output-

base-directory parameter. This application returns an exit status code whose value

indicates whether or not the processing was successful.

Table 242 on page 452 indicates the specific attributes written for these database

tables.

origin-output-
beamrec-list

par file <none> beam recipes for output beams

beamrec-list1 par file <none> list of beam recipes for regional
distance

beamrec-list2-3 par file <none> list of beam recipes for teleseismic
distances

TABLE 209: DATA PRODUCED BY SEGMENT ARCHIVING PROCESSING

Name Category Description

returned value application exit status indicates success or failure

wfdisc database table origin beams generated

wftag database table maps origins to beams

“.w” binary files origin-beam time-series samples

TABLE 208: INPUT PARAMETERS FOR SEGMENT ARCHIVING
PROCESSING (CONTINUED)

Par Name Source Default Value Description
411

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

412

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Processes

The following processes shown in Figure 47 on page 408 are described in this sec-

tion:

■ Query for Origins (in Interval) [13.1]

■ Initialize Site-specific Parameters [13.2]

■ Perform Segment Archiving [13.3]

Query fo r Or i g in s (i n I n te rva l) [13 .1]

The process Query For Origins (In Interval) constructs a suitable database query,

which is submitted to the origin table, and returns the results as a dborigin con-

tainer. It is implemented by a call to the local Scheme function query-for-dbor-

igin-container. (For general information on how database queries are

implemented see “Querying the Database” on page 41.) This function is called by

the Scheme language code:

(query-for-dborigin-container)

The function requires no arguments. It acquires the start-time and end-time, and

the origin table from the CVAR datastore. It then constructs the database query,

submits the query to the database via the global Scheme function create-and-

fill-container, and returns a dborigin container.

I n i t i a l i ze S i t e - spec ific
Pa ramete r s [13 .2]

Process Initialize Sites acquires all of the site information for the stations belonging

to the network specified by the parameter net. It is implemented by a call to the

local function initialize-net-sites. The function follows the general site ini-

tialization model described in “Initializing Sites” on page 46. It is called by the

Scheme language code:

(initialize-net-sites dborigin-container)

The function requires one argument, which is described in Table 68 on page 155.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
This function creates an initsite container in which to return the initsite objects. It

then acquires local variables by accessing the CVAR datastore and fills the initsite

container with the initsite objects consisting of dbsite and recipe objects. The local

Scheme function query-for-network-site-container obtains the dbsite

objects for the specified network. The objects are used by the local Scheme func-

tion initialize-net-site to create the initsite objects. The recipe objects,

which are attached to the initsite fields, are obtained from the CVAR datastore.

After the initsite container is populated, the function initialize-net-sites

initializes the travel-time tables for all seismic phases from all sites via the local

Scheme function initialize-net-tt-tables. The function reads all relevant

arrival, association, origin, affiliation, and site information from the corresponding

database tables into a dbarsoc container via the local Scheme function query-

for-dbarsoc-container. The function then computes time intervals for all sites

for all of the origins in the dborigin container via the local Scheme function com-

pute-net-ti. The function initialize-net-sites then acquires the wfdata

and corresponding wfmems affiliated with the network sites via the local Scheme

functions query-for-wfdata-container and query-for-wfmem-con-

tainer, which use the site, sensor, instrument, sitechan, affiliation and wfdisc data-

base tables.

Finally, for each site in the initsite container, initialize-net-sites extracts

initialization information and sets the arsoc container, wfdata container, and wfmem

containers within the initsite object for that specific site. It returns an initsite con-

tainer. The contents of an initsite object specific to the SegArch application are pro-

vided in the 13th column (SegArch) in Table 8 on page 50 (see “Contents of Initsite

Objects” on page 46).

Per fo rm Segment A rch i v ing [13 .3]

The process Perform Segment Archiving generates and saves the origin beams

required for segment archiving. It writes them to the database and the UNIX file-

system. This process is implemented by the local Scheme function process-ori-

gin, which is called from the local Scheme function process-origins (note the
413

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

414

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
distinction in function names). The latter function simply provides the loop over

origins (outer loop) and passes arguments. It is called by the Scheme language

code:

(process-origins initsite-container origin-container)

This function requires two arguments, which are described in Table 210.

The processing is performed by the local Scheme function process-origin,

which operates on each dborigin object. Function process-origin is called by

the Scheme code:

(process-origin initsite-container origin)

This function requires two arguments, which are described in Table 211.

For each origin this function performs a loop over the sites referenced in the initsite

container. It performs the following subprocesses for each origin and site:

1. Extract parameters.

TABLE 210: FUNCTIONAL INTERFACE OF PROCESS-ORIGINS

Argument Name Usage Type Description

initsite-container input container initsite objects

origin-container input container dborigin objects

n/a returned value logical scalar indicates success (t)
or failure (nil)

TABLE 211: FUNCTIONAL INTERFACE OF PROCESS-ORIGIN

Argument Usage Type Description

initsite-container input container initsite objects

origin input GObj dborigin object

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
2. Calculate the distance-based time interval.

3. Calculate station-to-event azimuth and slowness.

4. Generate distance-based beam recipes.

5. Acquire waveforms.

6. Check waveform quality.

7. Generate beams (and write their time-series data samples to the UNIX

filesystem).

8. Write beams to the database (wfdisc and wftag).

The next section provides more information about this function.

Deta i l ed Desc r ip t ion o f Pe r fo rm
Segment A rch i v ing [13 .3]

This process is accomplished by a loop over origins in which the inner-most func-

tion, process-origin, accomplishes segment archiving for each given origin and

site.

Figure 48 shows the architecture of this process. The function process-origin

implements a loop over sites, which encloses a single pass through eight subpro-

cesses.

The following subprocesses shown in Figure 48 are described in this section:

■ Extract Parameters [13.3.1]

■ Calculate Distance-based Time Intervals [13.3.2]

■ Calculate Station-to-Event Distance [13.3.3]

■ Generate Distance-based Beam Recipes [13.3.4]

■ Acquire Waveforms [13.3.5]

■ Check Waveform Quality [13.3.6]

■ Generate Beams [13.3.7]

■ Write Beams to Database [13.3.8]
415

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

 Ju
n

e
 2

0
0

1
 ID

C
-7

.1
.1

 D
e

te
c

tio
n

 a
n

d
 F

e
a

tu
re

 E
x

tra
c

tio
n

 (D
F

X
) - S

c
h

e
m

e
 F

ile
s

▼

C
h

a
p

te
r 7

:

A
d

m
in

is
tra

tiv
e

 P
ro

c
e

s
s
in

g

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

416

13.3.4

istance-based
Generate

eam Recipes

-waveforms

13.3.5

read

Waveforms
Acquire

-parameters

13.3.3

compute-ti

ation-to-Event
Calculate

Distance

wfdiscDbwaveformsD
FIGURE 48. ARCHITECTURE OF PERFORM SEGMENT ARCHIVING

over
Loop

sites

-container-db

13.3.8

submit

Beams to
Write

Database

13.3.1

Parameters
Extract

-origin-ti

13.3.2

compute-site

Distance-based
Calculate

Time
Intervals

D
B

-origin-beams

13.3.7

compute

Beams
Generate

no
more

next
site

Return

wfdisc, wftag

dborigin containerM
initsite container

Db

extract-gobj-attr,
scan-container,
copy-container

St

-waveforms

13.3.6

qc

Waveform
Check

Quality

waveformsD

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
Ex t rac t Pa ramete r s [13 .3 .1]

For each processing time interval and origin, a variety of parameter values are

needed to perform segment archiving. The subprocess Extract Parameters obtains

these values, as well as other required symbols, objects, and containers of objects

from the input initsite container via the inline Scheme intrinsic function define,

the common libgobj function extract-gobj-attr, and global functions scan-

container and copy-container.

Ca l cu la te D i s tance -based T ime
In te rva l s [13 .3 .2]

A time interval for acquiring waveforms is estimated based on the event-to-station

distance and the phase specified in the time-interval recipe. The subprocess Calcu-

late Distance-based Time Intervals applies the DFX/libutil function compute-site-

origin-ti and the inline intrinsic Scheme functions define, car, and cadr to

determine the requisite time interval. The DFX/libutil function compute-site-

origin-ti is called by the Scheme language code:

(set! ti-list (compute-site-origin-ti dbsite dborigin

 origin-tirec-con))

The function requires three arguments, which are described in Table 212. This table

is quite similar to Table 14 on page 64; however, the second argument is a dborigin

object and the third argument is a origin time-interval recipe container.

TABLE 212: FUNCTIONAL INTERFACE OF COMPUTE-SITE-ORIGIN-TI

Argument Name Usage Type Description

dbsite input GObj dbsite object

dborigin input GObj dborigin object

origin-tirec-con input container time-interval process-
ing recipe objects (for
required origin beams)

n/a returned value list reals: start-times and
end-times for intervals
417

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

418

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This function returns a list of time intervals for each recipe in the origin-beam time-

interval processing recipe container. The least and greatest start-times and end-

times, respectively, are extracted from the returned list and are used to define the

time interval applied in acquiring the waveforms for all sites and for all origins. This

time interval is then extended on each end (that is, both an earlier beginning and

a later ending) by an amount specified in the parameter data-offset-len. This

increase ensures that edge effects do not degrade the beam that is to be formed.

Ca l cu la te S ta t ion - to -Event
D i s tance [13 .3 .3]

This subprocess calculates the station-to-event distance via the DFX/libutil func-

tion compute-ti-parameters. This distance is used later to determine which

type of beam recipe to use in forming the origin beam. The function compute-

ti-parameters is called by the Scheme language code:

(set! se-list (compute-ti-parameters dbsite dborigin

 origin-tirec-con ÒPÓ))

The function requires four arguments, which are described in Table 213.

TABLE 213: FUNCTIONAL INTERFACE OF COMPUTE-TI-PARAMETERS

Argument Name Usage Type Description

dbsite input GObj dbsite object

dborigin input GObj dborigin object

origin-tirec-con input container time-interval processing rec-
ipe objects (for required ori-
gin beams)

“P” input character-string phase of first arrival

n/a returned value list reals and character-string:
start-times and end- times,
station-to-event distance,
azimuths, magnitude-slow-
ness, and model information
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
This function returns a list consisting of a character-string identifying the travel-

time model used and several real-valued parameters, including the station-to-

event distance (in degrees).

Genera te D i s tance -based Beam
Rec ipes [13 .3 .4]

This subprocess extracts the distance-specific beam recipes from the beam-recipe

container into a new container (symbol new-beamrec-con). The distance-specific

beam names are obtained from the user parameters beamrec-list1 and beamrec-

list2-3.

Acqu i re Wave fo rms [13 .3 .5]

This subprocess acquires waveforms for the appropriate processing interval given

the arrival phase and station-to-event distance. It is implemented by the DFX/lib-

data function read-waveforms. This function is called by the Scheme language

code:

(set! wfdata-con (read-waveforms wfmem-con wfdata-con t1

 t2))

The function requires four arguments, which are described in Table 214.

TABLE 214: FUNCTIONAL INTERFACE OF READ-WAVEFORMS

Argument Usage Type Description

wfdata-con input and output container wfdata objects

wfmem-con input and output container wfmem objects

t1 input real start-time of this pro-
cessing interval

t2 input real end-time of this pro-
cessing interval

n/a returned value container wfdata objects
419

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

420

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
This function produces its result in two fashions. First, as a side-effect, the input

arguments wfmem-con and wfdata-con are altered in accordance with the acquisi-

tion of the waveforms. Second, the function read-waveforms returns the altered

wfdata container (symbol wfdata-con), which is null if an error occurred.

This subprocess acquires waveforms by the standard method in DFX (see “Reading

Waveforms” on page 58).

Check Wave fo rm Qua l i t y [13 .3 .6]

This subprocess checks the quality of and repairs minor defects in the acquired

waveforms via the DFX/libqc function qc-waveforms. The subprocess uses the

standard method in DFX for checking the quality of waveforms (see “Checking

Quality of Waveforms” on page 69).

Genera te Beams [13 .3 .7]

This subprocess generates the origin beams for the current processing interval, ori-

gin, and site via the local Scheme function compute-origin-beams. This func-

tion is called by the Scheme language code:

(set! origin-beam-list (compute-origin-beams wfdata-con

 dbsite dborigin new-beamrec-con tirec-con))

The function requires five arguments, which are described in Table 215.

TABLE 215: FUNCTIONAL INTERFACE OF COMPUTE-ORIGIN-BEAMS

Argument Name Usage Type Description

wfdata-con input container wfdata objects

dbsite input GObj dbsite object

dborigin input GObj dborigin object
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
The function compute-origin-beams performs the following steps:

1. Determine the number of beam-recipe objects that exist, and acquire this

number of unique wfids from the lastid database table.

2. Fill the dbwfdisc container with the beam objects returned by the DFX/

libio function create-db-origin-beam.

3. Return a list consisting of the wfdisc and wftag containers. The latter is

empty if the parameter data-output-wftag is not set to unity.

The function create-db-origin-beam performs the following steps:

1. Compute beams based on the vector-slowness predicted by the station

and origin locations and the given arrival phase for each beam recipe in

the input beam-recipe container.

2. Write the beam time-series data samples to the appropriate directory and

filename of the UNIX filesystem.

3. Create and fill the dbwfdisc output container.

4. If required, create a dbwftag container corresponding to the dbwfdisc

container.

5. Return a list consisting of the dbwfdisc and dbwftag containers.

The symbols dbsite (site information), dborigin (origin information), and tirec-con

(time-interval recipe information) are used to compute the time intervals over

which the origin beams are computed.

new-beamrec-con input container beam-recipe
objects

tirec-con input container time-interval recipe
objects

n/a returned value list dbwfdisc and
dbwftag containers

TABLE 215: FUNCTIONAL INTERFACE OF COMPUTE-ORIGIN-BEAMS

Argument Name Usage Type Description
421

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

422

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Wri te Beams to Database [13 .3 .8]

This subprocess writes the wfdiscs and the wftags to the database. The inline intrin-

sic Scheme functions car and cadr are used to separate the dbwfdisc and dbwftag

containers from the list returned by the local Scheme function compute-origin-

beams. The global Scheme function submit-container-db is used to save the

dbwfdisc and dbwftag containers in the appropriate database tables. The specific

table names are provided by the CVAR datastore parameters out-wfdisc-table and

out-wftag-table by the inline global Scheme function mstspar. For more informa-

tion about submitting results to the database see “Writing to the Database” on

page 44.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
QUALITY CONTROL STAT IST ICS [14]

Quality Control Statistics (QCStats) is a DFX Scheme application that produces sta-

tistical measures of the attributes determined while checking the quality of raw

waveforms at a given site. The source code resides in the file DFX-qcstats.scm.

In contrast to the other 13 DFX applications, QCStats is invoked only from within

the three automatic waveform detection applications: SeisDet (seismic), HydroDet

(hydroacoustic), and InfraDet (infrasonic). The results of QCStats are written to the

qcstats table of the database.

The application’s top-level architecture is defined and illustrated in the following

sections. Each process in the top-level design is described in general terms. Pro-

cesses that require further explanation have detailed descriptions that follow the

general sections. These processes are indicated by the heavy lines in the architec-

tural diagram. The detailed descriptions decompose the process into its constituent

subprocesses. This description includes the following topics:

■ General Description

■ Architecture

■ Input/Output

■ Processes

■ Detailed Description of Identify Missing Waveforms [14.1]

■ Detailed Description of Calculate Waveforms Availability [14.3]

Genera l Desc r ip t ion

This application evaluates the attributes of a set of waveforms that have been sub-

ject to standard quality-control processing. It computes statistical measures con-

cerning the quality of the waveforms and writes them to the qcstats database table.

Arch i tec tu re

QCStats is implemented by two principal processes (see Figure 49). The first pro-

cess identifies missing waveforms by determining which station-channel pairs are

not present in the overall set of waveforms. Information about these missing data
423

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

424

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
station-channel pairs is written to the qcstats database table. The second process

occurs in a loop over those station-channel pairs for which waveforms are available

in the set of quality-checked waveforms. For each station-channel pair, statistical

measures are computed and the discrepancy between the requested and available

data is calculated. Results are written to the qcstats database table.

FIGURE 49. ARCHITECTURE OF QCSTATS

I nput /Output

Table 216 lists the input CVAR datastore parameters used in the Scheme code.

wfdisc

over
Loop

wfdata
objects

14.4

set-gobj-attr

qc-stats
Fill-in

Object

qc-stats

Exit

no
more

next
wfdata
object

Db Db

14.5

write-qc-stats

Results to
Write

Database

14.2

Quality-Control
Extract

Parameters

14.1

find-missing-data

Missing
Identify

Waveforms

-availability

14.3

measure-data

Waveforms
Calculate

Availability
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
TABLE 216: INPUT PARAMETERS FOR QUALITY CONTROL STATISTICS
PROCESSING

Par Name Source
Default
Value Description

processing-interval-list argument #1
of application

<none> list of start-times and end-
times for these waveforms

earlier and later than
requested times, respectively,
to account for extra wave-
forms required to avoid signal
processing edge effects

sta-chan-pairs argument #2
of application

<none> list of station and channel
codes at this site

wfdata-con argument #3
of application

<none> wfdata objects container

sta par file <none> code of station to process

start-time par file <none> requested start-time of wave-
forms

end-time par file <none> requested end-time of wave-
forms

qcstats-cull-sta-chan
-list

par file <none> list of station-channel pairs
whose waveforms are
dropped due to excessive
deficiency

lastid-table par file lastid name of database table that
keeps track of unique identifi-
cation numbers for each cate-
gory of data entry

out-qcstats-table par file <none> name of database table that
receives output results from
this application
425

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

426

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
All results from this application are written to the database table described in Table

217.

Table 243 on page 452 indicates the specific attributes written to this database

table. This application returns a status code indicating whether or not the process-

ing was successful.

Because the function process-qcstats is invoked only from within other DFX

applications, rather than from a process control pipeline, the nature of the invoca-

tion is identical to the Scheme language code for invoking any other Scheme lan-

guage function, as in:

(process-qcstats processing-interval-list sta-chan-pairs

 wfdata-con)

The function requires three arguments, which are listed in Table 218.

TABLE 217: DATA PRODUCED BY QUALITY CONTROL STATISTICS
PROCESSING

Name Category Description

returned value application exit status indicates success or failure

qcstats database table holds statistical measures about the
waveforms for this station and pro-
cessing time interval

TABLE 218: FUNCTIONAL INTERFACE OF PROCESS-QCSTATS

Argument Name Usage Type Description

processing-interval-list input list reals consisting of the
start-time and end-time
of these waveforms

sta-chan-pairs input list pairs of character-
strings: codes of station-
channel pairs at this sta-
tion

wfdata-con input container wfdata objects
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
The intended output from this function is written directly to the database (see

Table 217 on page 426). This function acts as a subroutine and has no meaningful

return value.

The symbol processing-interval-list provides the start-time and end-time values of

the processing interval expressed as a two-element list. The symbol sta-chan-pairs

provides a list of pairs of character-strings (one pair for each combination of station

code and channel code for the station-channel pairs to be processed). For exam-

ple, this list may resemble ((LS01 sd) (LS02 sd) (LS04 sd)) where three station-

channel pairs all have channel character-strings ÒsdÓ and three station character-

strings as ÒLS01Ó, ÒLS02Ó, and ÒLS04Ó. The symbol wfdata-con is a wfdata con-

tainer for each station-channel pair. Each wfdata object includes a quality-control

mask, and a wfmem object itself points to a data vector (the vector of waveforms

time-series samples). The mask is a structure that is associated with the data vector

and contains quality-control information concerning the waveforms for the given

station-channel pair.

Processes

The following processes shown in Figure 49 on page 424 are described in this sec-

tion:

■ Identify Missing Waveforms [14.1]

■ Extract Quality-control Parameters [14.2]

■ Calculate Waveforms Availability [14.3]

■ Fill-in qc-stats Object [14.4]

■ Write Results to Database [14.5]

I den t i f y Mi s s ing Wave fo rms [14 .1]

This process identifies the station-channel pairs for which waveforms do not exist.

This process is implemented by a call to the local Scheme function find-miss-

ing-data. It compares the station-channel pairs with those it finds in the wave-

form container. An entry to the qcstats table is made for the missing station-

channel pairs. This function is called by the Scheme language code:
427

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

428

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
(find-missing-data qc-stats-obj sta-chan-pairs

 wfdata-con)

The function requires three arguments, which are described in Table 219.

This function’s results are returned as a side-effect by modifying the contents of

the first argument, namely the qc-stats object denoted by the symbol qc-stats-obj.

It uses the character-strings for the station and channel codes of a given station-

channel pair and checks existence in the container wfdata-con. Missing channel

information is written to the database. If there are no missing station-channel

pairs, the qc-stats object is NULL on return.

For more information about this function see “Detailed Description of Identify

Missing Waveforms [14.1]” on page 432.

Ex t rac t Qua l i t y - cont ro l
Pa ramete r s [14 .2]

This process extracts the quality-control attributes from the mask (for each object

in the wfdata container) so that these attributes are available to be written to the

qc-stats object (see “Fill-in qc-stats Object [14.4]” on page 430). This process is

implemented by inline Scheme code within the function process-qcstats. The

TABLE 219: FUNCTIONAL INTERFACE OF FIND-MISSING-DATA

Argument Name Usage Type Description

qc-stats-obj output GObj qc-stats object

sta-chan-pairs input list pairs of character-strings
of the codes of the paired
stations and channels at
this site

wfdata-con input container wfdata objects for wave-
forms that have been
checked for quality
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
common libgobj Scheme function extract-gobj-attr performs the required

processing. Information is extracted from the wfdata object and its mask. Table 220

lists the information extracted from each mask.

Ca l cu la te Wave fo rms Ava i l ab i l i t y [14 .3]

This process compares the available time-duration of the quality-checked wave-

forms with the requested time-duration of the processing interval (provided by

access to the CVAR datastore). It sets the “missing” attribute of the qc-stats object

TABLE 220: INFORMATION EXTRACTED FROM EACH WFDATA OBJECT’S
MASK

Parameter Name Type Description

nseg integer number of masked waveform segments

maskedtime real total time-duration of waveforms with masked
segments

pointspike real total time-duration of waveforms masked due to
single-sample spikes

spike real total time-duration of waveforms masked due to
multi-sample spikes

nconstseg integer total number of waveform segments with con-
stant value

consttime real total time-duration of waveform segments with
constant value

avgconst real average time-duration of waveform segments
with constant value

stdconst real standard deviation of time-duration of waveform
segments with constant value

dropped integer valued 1 if the waveform object for this station-
channel pair is to be removed from the set of
quality-control evaluated waveforms

valued 0, otherwise
429

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

430

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
to the difference in these time-durations (requested–available). This process is

implemented by a call to the local Scheme function measure-data-availabil-

ity. The function is called by the Scheme language code:

(measure-data-availability qc-stats-obj wfdata-obj)

The function requires two arguments, which are described in Table 221.

The results of this function are returned as a side-effect; symbol qc-stats-obj has its

missing attribute set to the difference between the requested waveforms time-

duration and the amount of waveforms in the wfdata object.

For more information about this function see “Detailed Description of Calculate

Waveforms Availability [14.3]” on page 437.

F i l l - i n qc - s ta t s Ob jec t [14 .4]

This process fills in the attributes of the qc-stats object, which is produced for each

wfdata object in the quality-checked wfdata container. It is implemented by inline

Scheme code using the common libgobj Scheme function set-gobj-attr in the

loop over waveforms objects within the function process-qcstats. Table 222

lists the nature of the information stored in the qc-stats object for each station-

channel pair.

TABLE 221: FUNCTIONAL INTERFACE OF MEASURE-DATA-AVAILABILITY

Argument Name Usage Type Description

qc-stats-obj output GObj qc-stats object

wfdata-obj input GObj wfdata object
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
Wri te Resu l t s to Database [14 .5]

This process writes a qc-stats object to the database. The database write is skipped

if the station-channel pair is a member of the parameter qcstats-cull-sta-chan-list.

Otherwise, attributes of the qc-stats object are set, and the qcstatid value is set.

Then the qc-stats object is written to the qcstats database table. This process is

implemented by a call to the local Scheme function write-qcstats, which uses

TABLE 222: INFORMATION STORED IN EACH QC-STATS
OBJECT

Parameter Type Description

dettime real start-time of these waveforms

detendtime real end-time of these waveforms

sta character-string station code

chan character-string channel code

dropped integer valued 1, if the wfdata object is to be
removed from the quality-checked wave-
form container

valued 0, otherwise

nseg integer number of waveform segments masked

masked real total time-duration of masked segments

pointspike real total time-duration of single-sample spikes

spike real total time-duration of multi-sample spikes

nconstseg integer number of waveform segments with con-
stant value

const real total time-duration of waveform segments
with constant value

avgconstval real average time-duration of waveform seg-
ments with constant value

stdconstval real standard deviation of time-duration of
waveform segments with constant value
431

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

432

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
the global Scheme function submit-container-db to write to the qcstats data-

base table. For more information on submitting results to the database see “Writ-

ing to the Database” on page 44. This function is called by the Scheme language

code:

(write-qcstats qc-stats-obj)

The function requires one argument, which is described in Table 223.

The qc-stats object provides all of the information written to the qcstats database

table.

Deta i l ed Desc r ip t ion o f Iden t i f y
Mi s s ing Wave fo rms [14 .1]

This process examines the list of requested station-channel pairs and compares

each of these with the station-channel pairs found in the quality-checked wave-

forms container in search of an exact match. Where none exists, a record concern-

ing that requested station-channel pair is written to the qcstats database table

indicating that waveforms are missing. This process is implemented by a call to the

local Scheme function find-missing-data.

Figure 50 shows the architecture of this function. This function is implemented by

five principal subprocesses. First, values are acquired for symbols required in per-

forming this process. The remaining four subprocesses are contained in a loop over

the full set of requested station-channel pairs. For each station-channel pair, the

quality-checked waveforms container is searched to determine whether or not an

TABLE 223: FUNCTIONAL INTERFACE OF WRITE-QCSTATS

Argument Name Usage Type Description

qc-stats-obj input GObj qc-stats object

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
exactly matching station-channel pair exists therein. If not, then appropriate

attributes of the qc-stats object for this station-channel pair are filled-in. Finally, this

qc-stats object is written to the qcstats database table.

FIGURE 50. ARCHITECTURE OF IDENTIFY MISSING WAVEFORMS

14.1.1

mstpar

Parameters
Extract

14.1.3

search-container

sta-i and chan-i
Seek Match to

in Data
Container

over
Loop

station
pairs

Return

GObj
wfdata

not null?

14.1.4

set-gobj-attr

into qc-stats
Set Attributes

Object

14.1.5

write-qcstats

Results to
Write

Database

•

no
more

next
sta-chan

pair

qc object
sta-chan-pairs list
wfdata container

M

yes

no

14.1.2

car, cadr

Station and
Extract

Channel

qcstatsDb
433

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

434

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
The following subprocesses shown in Figure 50 are described in this section:

■ Extract Parameters [14.1.1]

■ Extract Station and Channel [14.1.2]

■ Seek Match to sta-i and chan-i in Data Container [14.1.3]

■ Set Attributes into qc-stats Object [14.1.4]

■ Write Results to Database [14.1.5]

Ex t rac t Pa ramete r s [14 .1 .1]

This subprocess acquires values for the requested start-times and end-times

required to calculate the quantity of missing waveforms. The inline global Scheme

function mstpar is used to extract values for these parameters from the CVAR

datastore. The parameters, symbols t1 and t2, are listed in Table 224.

Ex t rac t S ta t ion and Channe l [14 .1 .2]

This subprocess acquires the station and channel codes required for each station-

channel pair in the list of requested station-channel pairs. The inline intrinsic

Scheme functions car and cadr are used to extract values for these parameters.

The parameters, symbols sta-i and chan-i, are listed in Table 224.

TABLE 224: INTERNAL PARAMETERS OF FIND-MISSING-DATA

Symbol Type Description

t1 real requested start-time of these waveforms

t2 real requested end-time of these waveforms

sta-i character-string station code of this station-channel pair

chan-i character-string channel code of this station-channel pair
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
Seek Match to s ta - i and chan- i i n
Da ta Conta ine r [14 .1 .3]

This subprocess seeks a match between the station codes and channel codes, sym-

bols sta-i and chan-i, respectively, and the station codes and channel codes in the

quality-checked waveforms container. The inline global Scheme function search-

container is used to extract that waveform object from the waveforms container

whenever both the station codes and the channel codes match the internal sym-

bols sta-i and chan-i, respectively (see Table 224). If an exact match exists, the

wfdata object whose attributes match is returned by the comparison code; other-

wise, a null object is returned. In either case the returned object is denoted by the

internal symbol this-obj.

Set A t t r ibu tes i n to qc - s ta t s
Ob jec t [14 .1 .4]

The process Identify Missing Waveforms writes a record to the qcstats database

table where waveforms are missing for a requested station-channel pair. The sub-

process Set Attributes into qc-stats Object fills in the qc-stats object to supply the

information for this record. Therefore, in cases where the requested waveforms are

missing, for the requested station-channel pair, the attributes of an initially nil qc-

stats object are filled-in. Three attributes are set in the qc-stats object: station code

(internal symbol sta), channel code (internal symbol chan), and time-duration of

the missing waveforms (internal symbol missing). The global Scheme function

set-gobj-attr is used to set these three attributes as listed in Table 225.

TABLE 225: ATTRIBUTES SET IN QC-STATS OBJECT

Symbol Type Description

sta character-string station code of this sta-
tion-channel pair

chan character-string channel code of this sta-
tion-channel pair

missing real time-duration of
requested waveforms
435

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

436

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Wri te Resu l t s to Database [14 .1 .5]

This subprocess writes a record to the qcstats database table where waveforms are

missing for a requested station-channel pair. It is implemented by the local Scheme

function write-qcstats, which is called by the Scheme language code:

(write-qcstats qc-stats-obj)

The function requires one argument, which is described in Table 226.

The qc-stats object whose symbol is qc-stats-obj is enhanced by setting several of

its indicative attributes to appropriate values and assigning a unique identification

number (internal symbol qcstatid) by the local Scheme function get-qcstatsid.

This function accesses the lastid database table.

The function write-qcstats performs the following steps:

1. Create an empty container to hold the input qc-stats object.

2. Acquire, by access to the CVAR datastore, the “cull-list” (the list of sta-

tion-channel pairs whose waveforms are deemed too defective to be

used for DFX application processing during this time interval).

3. Extract the station codes and channel codes from the qc-stats object that

was input to this function.

4. Test if this station-channel pair is found on the cull-list.

5. If this station-channel pair is not found on the cull-list, then

– complete the input qc-stats object with additional information by the

common libgobj Scheme function set-gobj-attr,

TABLE 226: FUNCTIONAL INTERFACE OF WRITE-QCSTATS

Argument Name Usage Type Description

qc-stats-obj input and output GObj qc-stats object

n/a returned value logical scalar indicates success (t)
or failure (nil)
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
– insert the input qc-stats object into the container via the global

Scheme function insert-container, and

– write the input qc-stats object, via the global Scheme function sub-

mit-container-db, to the qcstats database table (whose identi-

fier is acquired by access to the CVAR datastore).

6. If this station-channel pair is found on the cull-list, then do not enhance

the qc-stats object, do not insert it into the container, and do not write it

to the database.

If the input qc-stats object is to be written to the database, its attributes that are

populated are those listed in Table 227.

Deta i l ed Desc r ip t ion o f Ca l cu l a te
Wave fo rms Ava i l ab i l i t y [14 .3]

This process compares the requested time-duration for this processing interval with

the time-duration of each station-channel-pair’s non-masked waveforms. It sets

the missing attribute in the qc-stats object to the difference between the requested

and the available time-durations. The process is implemented by a call to the

Scheme-coded function measure-data-availability.

TABLE 227: ATTRIBUTES POPULATED IN QC-STATS OBJECT

Symbol Type Description

qcstatsid integer unique qcstats table entry identification num-
ber for this station-channel pair

time real requested start-time of these waveforms

endtime real requested end-time of these waveforms

jdate character-string Julian date of start-time expressed as yyyyddd

auth character-string author

lddate date load date of this database insertion
437

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

438

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Figure 51 shows the architecture of this process. The process is implemented by a

single pass through three subprocesses. The first subprocess extracts parameter

values for the symbols required in performing this process. The second subprocess

compares the requested and available waveforms’ time-durations. The third sub-

process sets the missing attribute in the qc-stats object with the amount by which

adjusted time-duration of the available waveforms is less than the time-duration

requested.

FIGURE 51. ARCHITECTURE OF CALCULATE WAVEFORMS AVAILABILITY

The following subprocesses shown in Figure 51 are described in this section:

■ Extract Parameters [14.3.1]

■ Compare Requested and Adjusted Available Data Duration [14.3.2]

■ Fill-in qc-stats Object with Data Availability [14.3.3]

qc object
wfdata object

14.3.1

Extract
Parameters

Return

14.3.2

Requested and
Compare

Adjusted Available
Data Duration

AND expected
retrieved

NOT null
?

no

yes

M

14.3.3

set-gobj-attr

Object with
Fill-in qc-stats

Data Availability
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Administrat ive Process ing
Ex t rac t Pa ramete r s [14 .3 .1]

The process Calculate Waveforms Availability requires values for the requested

start-times and end-times to calculate any discrepancy between the adjusted time-

duration available and the time-duration requested. Subprocess Extract Parameters

acquires the requested time-duration. The inline global Scheme function mstpar is

used to extract values for these requested time limits via access to the CVAR

datastore (see Table 228).

The inline local Scheme function say-retrieved-wfdata-time is used to

extract a value for the adjusted time-duration of the available waveforms set into

symbol retrieved.

The adjustment to the time-duration of available waveforms subtracts the time-

duration of the data added at each end of the requested processing interval. Thus,

if data were requested from time 10 to 24, and the data acquired spanned the

interval from 7 to 26 (starting 3 earlier and running 2 later to eliminate signal pro-

cessing edge effects), then the adjusted time-duration of available data would be

reported as 14 (= 24 – 10). However, if data were unavailable until 13, then the

data acquired would range from 13 to 26, and the adjusted time-duration of avail-

able data would be reported as 11 (= 24 – 13).

TABLE 228: INTERNAL PARAMETERS OF MEASURE-DATA-AVAILABILITY

Symbol Type Description

t1 real requested start-time of this waveform

t2 real requested end-time of this waveform

retrieved real adjusted time-duration of available waveforms
439

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

440

▼

Chapter 7:

Administrat ive Process ing

S o f t w a r e
I D C D O C U M E N T A T I O N
Compare Reques ted and Ad jus ted
Ava i l ab le Data Dura t ion [14 .3 .2]

This subprocess calculates the difference between the time-duration of requested

data and the adjusted time-duration of available data. The inline intrinsic Scheme

code is used to ensure that neither the requested time-duration, (expected) = (t2 –

t1), nor the adjusted available time-duration, (retrieved), is nil. If both the

requested and adjusted available time-durations are non-nil, then the inline intrin-

sic Scheme code is used to calculate their difference (expected - retrieved).

F i l l - i n qc - s ta t s Ob jec t w i th Data
Ava i l ab i l i t y [14 .3 .3]

This subprocess fills in the missing attribute of a qc-stats object with the difference

between the requested time-duration and the adjusted available time-duration of

the waveforms. The inline common libgobj Scheme function set-gobj-attr is

used to set the calculated difference in time-durations (requested - adjusted avail-

able) into the missing attribute in the qc-stats object.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 8: Da tabase Desc r ip t ion

This chapter describes the database usage of DFX and includes the following top-

ics:

■ General Description

■ Database Tables

■ Output Database Attributes
e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1 441

S o f t w a r e
I D C D O C U M E N T A T I O N

442
Chapter 8: Da tabase Desc r ip t ion

GENERAL DESCR IPT ION

DFX makes extensive use of the IDC relational database; however, DFX does not

use a single set of tables. Instead each DFX application is configured to read and

write the tables appropriate to the functionality. For certain common tasks, such as

reading waveforms, there are tables used by most applications (see “Reading

Waveforms” on page 58). The interface between DFX applications and the data-

base is handled through the Generic Database Interface in libgdi.

This chapter first describes which tables are used by the 14 DFX applications. The

remaining sections describe the specific attributes written by each application.

DATABASE TABLES

DFX applications use the IDC database tables listed in Table 229. An R indicates

that the application reads the table; a W indicates that the application writes the

table; and a B indicates that the application reads and writes the table. For an

application to be considered reading from a table, it must be retrieving data for

some sort of processing. Most applications check, in a process known as screening,

for entries that already exist in the database before writing to a table (see “Screen-

ing Database Containers” on page 43). Although the application technically reads

from the table, screening is not considered a database read for the purpose of

Table 229.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 8:

Database Descr ipt ion
TABLE 229: DATABASE TABLES USED BY EACH DFX
APPLICATION

Database
Table D

FX
 A

pp
lic

at
io

n

Se
is

D
et

O
ri

gi
nB

ea
m

B
O

TF

In
tS

ei
sR

cl

A
ut

oS
ei

sR
cl

D
PS

N
R

N
oi

se
A

m
p

Se
is

Ev
ch

H
yd

ro
D

et

In
tH

yd
ro

R
cl

H
yd

ro
Ev

ch

In
fr

aD
et

Se
gA

rc
h

Q
C

St
at

s

affiliation R R R R R R R R R R R R R

amplitude W W W W W W W W

amp3c W W W

apma W W W

arrival W B B R R R W B W R

assoc R R R R R R

ceppks W

complexity W

detection W W W W W W

hydro_features W B

infra_features W

instrument R R R R R R R R R R R R R

lastid B B B B B B B B B B B B B

origerr R R

origin R R R R R R R

parrival W W W

qcstats W W W W

sensor R R R R R R R R R R R R R

site R R R R R R R R R R R R R

sitechan R R R R R R R R R R R R R

splp W
443

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

444

▼

Chapter 8:

Database Descr ipt ion

S o f t w a r e
I D C D O C U M E N T A T I O N
OUTPUT DATABASE ATTR IBUTES

The following sections provide a synopsis of the attributes in each database table,

which are populated by the applications. Only attributes whose values are set by

the application are included. Other attributes defined in the schema but not set by

the application will contain default or null values or, in the case of updating, the

values already contained in the database. The following sections follow the order

of the application descriptions in the previous chapters of this document.

Se i smic P rocess ing

Automat i c Se i smic Detec t ion [1]

The Automatic Seismic Detection (SeisDet) application writes to nine database

tables: amplitude, amp3c, apma, arrival, detection, lastid, qcstats, wfdisc and wftag.

Table 230 lists the attributes populated in each table except for the lastid and

qcstats tables. The lastid table is accessed and updated for both arids and wfids as

needed. The qcstats table is described in “Quality Control Statistics [14]” on

spvar W

timefreq W

thirdmom W

wfdisc B B B R R R R R R R R B B

wftag W W W

TABLE 229: DATABASE TABLES USED BY EACH DFX
APPLICATION (CONTINUED)

Database
Table D

FX
 A

pp
lic

at
io

n

Se
is

D
et

O
ri

gi
nB

ea
m

B
O

TF

In
tS

ei
sR

cl

A
ut

oS
ei

sR
cl

D
PS

N
R

N
oi

se
A

m
p

Se
is

Ev
ch

H
yd

ro
D

et

In
tH

yd
ro

R
cl

H
yd

ro
Ev

ch

In
fr

aD
et

Se
gA

rc
h

Q
C

St
at

s

 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 8:

Database Descr ipt ion
page 452; in particular, see Table 243. The application may not write all of the

attributes listed in Table 230 every time. The attributes written depend on the type

of station being processed.

Automat i c Or i g in Beam [2]

The Automatic Origin Beam (OriginBeam) application writes to three database

tables: lastid, wfdisc, and wftag. Table 231 lists the attributes populated in the

wfdisc and wftag tables. The lastid table is accessed and updated for wfids as

needed.

TABLE 230: DATABASE ATTRIBUTES WRITTEN BY SEISDET

Table Attributes

amplitude ampid, arid, chan, amp, per, snr, amptime, start_time, duration, bandw,
amptype, units, inarrival, auth, lddate

amp3c arid, cfreq, vamp, vsnr, hamp, hsnr, htov, rid, lddate

apma phase, arid, freq, snr, ampp, amps, amplr, rect, plans, planlr, hvratp,
hmxmn, inang3, seazp, seazs, seazlr, inang1, ptime, stime, auth, apmarid,
lddate

arrival sta, time, arid, jdate, chan, stype, deltim, azimuth, delaz, slow, delslo,
ema, rect, amp, per, snr, qual, auth, lddate

detection arid, jdate, time, sta, chan, bmtype, cfreq, seaz, delaz, slow, delslo, snr,
stav, fstat, deltim, bandw, fkqual, lddate

wfdisc sta, chan, time wfid, jdate, endtime, nsamp, calib, calper, instype, segtype,
datatype, dir, dfile, foff, lddate

wftag tagname, tagid, wfid, lddate

TABLE 231: DATABASE ATTRIBUTES WRITTEN BY ORIGINBEAM

Table Attributes

wfdisc sta, chan, time wfid, jdate, endtime, nsamp, calib, calper, instype, segtype,
datatype, dir, dfile, foff, lddate

wftag tagname, tagid, wfid, lddate
445

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

446

▼

Chapter 8:

Database Descr ipt ion

S o f t w a r e
I D C D O C U M E N T A T I O N
I n te rac t i ve Beam on the F l y [3]

The Interactive Beam on the Fly (BOTF) application writes to two database tables:

lastid and wfdisc. Table 232 lists the attributes populated in the wfdisc table. The

lastid table is accessed and updated for wfids as needed.

I n te rac t i ve Se i smic Reca l l [4]

The Interactive Seismic Recall (IntSeisRcl) application writes to six database tables:

amplitude, amp3c, apma, arrival, detection, and lastid. Table 233 lists the attributes

populated in each table except for the lastid table. The lastid table is accessed and

updated for ampids as needed. The application may not write all of the attributes

listed in Table 233 every time. The attributes written depend on the type of station

being processed.

TABLE 232: DATABASE ATTRIBUTES WRITTEN BY BOTF

Table Attributes

wfdisc sta, chan, time wfid, jdate, endtime, nsamp, calib, calper, instype, segtype,
datatype, dir, dfile, foff, lddate

TABLE 233: DATABASE ATTRIBUTES WRITTEN BY INTSEISRCL

Table Attributes

amplitude ampid, arid, chan, amp, per, snr, amptime, start_time, duration, bandw,
amptype, units, inarrival, auth, lddate

amp3c arid, cfreq, vamp, vsnr, hamp, hsnr, htov, rid, lddate

apma phase, arid, freq, snr, ampp, amps, amplr, rect, plans, planlr, hvratp,
hmxmn, inang3, seazp, seazs, seazlr, inang1, ptime, stime, auth, apmarid,
lddate

arrival chan, channel, deltim, azimuth, delaz, slow, delslo, ema, rect, amp, per,
logat, snr, qual, auth

detection arid, jdate, time, sta, chan, bmtype, cfreq, seaz, delaz, slow, delslo, snr,
stav, fstat, deltim, bandw, fkqual, lddate
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 8:

Database Descr ipt ion
Automat i c Se i smic Reca l l [5]

The Automatic Seismic Recall (AutoSeisRcl) application writes to six database tables:

amplitude, amp3c, apma, arrival, detection, and lastid. Table 234 lists the attributes

populated in each table except for the lastid table. The lastid table is accessed and

updated for ampids as needed. The application may not write all of the attributes

listed in Table 234 every time. The attributes written depend on the type of station

being processed.

Automat i c Depth -phase SNR [6]

The Automatic Depth-phase SNR (DPSNR) application writes to two database

tables: amplitude and lastid. Table 235 lists the attributes populated in the amplitude

table. The lastid table is accessed and updated for ampids as needed.

TABLE 234: DATABASE ATTRIBUTES WRITTEN BY AUTOSEISRCL

Table Attributes

amplitude ampid, arid, chan, amp, per, snr, amptime, start_time, duration, bandw,
amptype, units, inarrival, auth, lddate

amp3c arid, cfreq, vamp, vsnr, hamp, hsnr, htov, rid, lddate

apma phase, arid, freq, snr, ampp, amps, amplr, rect, plans, planlr, hvratp,
hmxmn, inang3, seazp, seazs, seazlr, inang1, ptime, stime, auth, apmarid,
lddate

arrival chan, channel, deltim, azimuth, delaz, slow, delslo, ema, rect, amp, per,
logat, snr, qual, auth

detection arid, jdate, time, sta, chan, bmtype, cfreq, seaz, delaz, slow, delslo, snr,
stav, fstat, deltim, bandw, fkqual, lddate

TABLE 235: DATABASE ATTRIBUTES WRITTEN BY DPSNR

Table Attributes

amplitude ampid, arid, chan, amp, per, snr, amptime, start_time, duration, bandw,
amptype, units, inarrival, auth, lddate
447

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

448

▼

Chapter 8:

Database Descr ipt ion

S o f t w a r e
I D C D O C U M E N T A T I O N
Automat i c No i se Ampl i tude
Es t imat ion [7]

The Automatic Noise Amplitude Estimation (NoiseAmp) application writes to three

database tables: amplitude, lastid, and parrival. Table 236 lists the attributes popu-

lated in the amplitude and parrival tables. The lastid table is accessed and updated

for both ampids and parids as needed.

Automat i c Se i smic Event
Cha rac te r i za t ion [8]

The Automatic Seismic Event Characterization (SeisEvch) application writes to nine

database tables: amplitude, ceppks, complexity, lastid, parrival, splp, spvar, timefreq,

and thirdmom. Table 237 lists the attributes populated in each table except the las-

tid table. The lastid table is accessed and updated for both ampids and parids as

needed.

TABLE 236: DATABASE ATTRIBUTES WRITTEN BY NOISEAMP

Table Attributes

amplitude ampid, parid, chan, amp, per, snr, amptime, start_time, duration, bandw,
amptype, units, inarrival, auth, lddate

parrival parid, orid, evid, sta, time, azimuth, slow, phase, delta, vmodel, lddate

TABLE 237: DATABASE ATTRIBUTES WRITTEN BY SEISEVCH

Table Attributes

amplitude ampid, parid, chan, amp, per, snr, amptime, start_time, duration, bandw,
amptype, units, inarrival, auth, lddate

ceppks orid, sta, ptyp, pkamp, pkqf, lddate

complexity orid, sta, phase, rectype, complexity, snr, lddate

parrival parid, orid, evid, sta, time, azimuth, slow, phase, delta, vmodel, lddate

splp orid, sta, rectype, ratio, lddate
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 8:

Database Descr ipt ion
Hydroacous t i c P rocess ing

Automat i c Hydroacous t i c
Detec t ion [9]

The Automatic Hydroacoustic Detection (HydroDet) application writes to five data-

base tables: arrival, detection, hydro_features, lastid, and qcstats. Table 238 lists the

attributes populated in each table except for the lastid and qcstats tables. The lastid

table is accessed and updated for arids as needed. The qcstats table is described in

“Quality Control Statistics [14]” on page 452; in particular, see Table 243.

spvar arid, fsid, acoef, bcoef, ccoef, fmin, fmax, svar, lddate

thirdmom arid, sta, rectype, tmf, tmfpct, lddate

timefreq orid, sta, rectype, zavpct, navpct, eavpct, zavcep, navcep, eavcep, zavcor,
navcor, eavcor, xcor, lddate

TABLE 238: DATABASE ATTRIBUTES WRITTEN BY HYDRODET

Table Attributes

arrival sta, time, arid, jdate, chan, deltim, snr, auth, lddate

detection arid, jdate, time, sta, chan, bmtype, snr, stav, deltim, lddate

hydro_features arid, peak_time, peak_level, total_energy, mean_arrival_time,
time_spread, onset_time, termination_time, total_time, num_cross,
ave_noise, skewness, kurtosis, cep_var_signal,
cep_delay_time_signal, cep_peak_std_signal, cep_var_trend,
cep_delay_time_trend, cep_peak_std_trend, low_cut, high_cut, ford,
ftype, fzp, prob_weight_time, sigma_time, lddate

TABLE 237: DATABASE ATTRIBUTES WRITTEN BY SEISEVCH (CONTINUED)

Table Attributes
449

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

450

▼

Chapter 8:

Database Descr ipt ion

S o f t w a r e
I D C D O C U M E N T A T I O N
I n te rac t i ve Hydroacous t i c Reca l l [10]

The Interactive Hydroacoustic Recall (IntHydroRcl) application writes to three data-

base tables: arrival, detection, and hydro_features. Table 239 lists the attributes pop-

ulated in each table. For arrival and detection it updates only time and deltim. For

hydro_features it updates all but onset and termination times and the filter parame-

ters.

Automat i c Hydroacous t i c Event
Cha rac te r i za t ion [11]

The Automatic Hydroacoustic Event Characterization (HydroEvch) application writes

to two database tables: amplitude and parrival. Table 240 lists the attributes popu-

lated in each table.

TABLE 239: DATABASE ATTRIBUTES WRITTEN BY INTHYDRORCL

Table Attributes

arrival time, deltim, lddate

detection time, deltim, lddate

hydro_features peak_time, peak_level, total_energy, mean_arrival_time,
time_spread, total_time, num_cross, ave_noise, skewness, kurtosis,
cep_var_signal, cep_delay_time_signal, cep_peak_std_signal,
cep_var_trend, cep_delay_time_trend, cep_peak_std_trend,
prob_weight_time, sigma_time, lddate

TABLE 240: DATABASE ATTRIBUTES WRITTEN BY HYDROEVCH

Table Attributes

amplitude ampid, parid, chan, amp, per, snr, amptime, start_time, duration, bandw,
amptype, units, auth, lddate

parrival parid, orid, evid, sta, time, azimuth, slow, phase, delta, vmodel, lddate
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 8:

Database Descr ipt ion
I n f r a son i c P rocess ing

Automat i c I n f r a son i c Detec t ion [12]

The Automatic Infrasonic Detection (InfraDet) application writes to seven database

tables: amplitude, arrival, detection, infra_features, lastid, qcstats, and wfdisc. Table

241 lists the attributes populated in each table except for the lastid and qcstats

tables. The lastid table is accessed and updated for ampids, arids and wfids as

needed. The qcstats table is described in “Quality Control Statistics [14]” on

page 452; in particular, see Table 243 on page 452.

Admin i s t r a t i ve P rocess ing

Segment A rch i v ing [13]

The Segment Archiving (SegArch) application writes to three database tables: wfdisc,

wftag, and lastid. Table 242 lists the attributes populated in the wfdisc and wftag

tables. The lastid table is accessed and updated for wfids as needed.

TABLE 241: DATABASE ATTRIBUTES WRITTEN BY INFRADET

Table Attributes

amplitude ampid, arid, chan, amp, per, snr, amptime, start_time, duration,
bandw, amptype, units, inarrival, auth, lddate

arrival sta, time, arid, jdate, chan, deltim, azimuth, delaz, slow, delslo, amp,
per, snr, qual, auth, lddate

detection arid, jdate, time, sta, chan, bmtype, cfreq, seaz, delaz, slow, delslo,
snr, stav, fstat, deltim, bandw, fkqual, lddate

infra_features arid, eng_time, eng_dur, eng_deldur, coh_time, coh_dur, coh_deldur,
coinc_time, coinc_dur, coinc_deldur, ford, zrcr_freq, zrcr_delfreq,
crnr_freq, crnr_delfreq, coh_pre, coh_snr, total_energy, auth, lddate

wfdisc sta, chan, time wfid, jdate, endtime, nsamp, calib, calper, instype, seg-
type, datatype, dir, dfile, foff, lddate
451

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

452

▼

Chapter 8:

Database Descr ipt ion

S o f t w a r e
I D C D O C U M E N T A T I O N
Qua l i t y Cont ro l S ta t i s t i c s [14]

The Quality Control Statistics (QCStats) application writes to two database tables:

qcstats and lastid. Table 243 lists the attributes populated in the qcstats table. The

lastid table is accessed and updated for qcstatsids as needed.

TABLE 242: DATABASE ATTRIBUTES WRITTEN BY SEGARCH

Table Attributes

wfdisc sta, chan, time wfid, jdate, endtime, nsamp, calib, calper, instype, segtype,
datatype, dir, dfile, foff, lddate

wftag tagname, tagid, wfid, lddate

TABLE 243: DATABASE ATTRIBUTES WRITTEN BY QCSTATS

Table Attributes

qcstats qcstatsid, sta, chan, time, jdate, endtime, dettime, detendtime, missing,
dropped, nseg, masked, pointspike, spike, nconstseg, const, avgconstval,
stdconstval, auth, lddate
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Refe rences

The following sources supplement or are referenced in document:

[Abe96] Abelson, H., Sussman, G. J., and Sussman, J., Structure and
Interpretation of Computer Programs, 2nd Edition, MIT Press,
Cambridge, MA, 1996.

[Fri97] Friedman, D., and Felleisen, M., The Little Schemer, MIT Press,
1997.

[Gan79] Gane, C., and Sarson, T., Structured Systems Analysis: Tools and
Techniques, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

[IDC5.1.1Rev2] Science Applications International Corporation, Veridian
Pacific-Sierra Research, Database Schema, Revision 2,
SAIC-00/3057, PSR-00/TN2830, 2000.

[IDC5.1.2] Science Applications International Corporation, Pacific-Sierra
Research Corporation, Database Tutorial, SAIC-99/3022,
PSR-99/TN1145, 1999.

[IDC5.1.3Rev0.1] Science Applications International Corporation, Veridian
Pacific-Sierra Research, Configuration of PIDC Databases,
SAIC-01/3022, PSR-99/TN1114, 2001.

[IDC5.2.1] Science Applications International Corporation, IDC Processing
of Seismic, Hydroacoustic, and Infrasonic Data, SAIC-99/3023,
1999.

[IDC6.2.4] Science Applications International Corporation, Configuration of
PIDC Processing Data Files, SAIC-99/3025, 1999.
e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1 453

454

▼ References

S o f t w a r e
I D C D O C U M E N T A T I O N
[Lan97g] Laney, H., Hydroacoustic Feature Extractor (DFX-H Version 1)
Technical Description, CMR-97/06, 1997.

[WGB00c] Working Group B, Proceedings of IDC Technical Experts Meeting
on Seismic-Acoustic Event Screening, Preparatory Commission of
the Comprehensive Nuclear Test-Ban Treaty Organization,
CTBT/WGB/TL-2/58, 2000.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

S o f t w a r e
I D C D O C U M E N T A T I O N

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0
Glossa ry

Selected terms in this glossary are spe-
cific to this document and are not appli-
cable in any other context. These
glossary items are indicated by append-
ing “(DFX only)” to the term.

Symbols

3-C

Three-component.

mPa

MicroPascals.

A

abs

Absolute value.

AIC

Akaike Information Criterion. A mathe-
matical method for distinguishing
between noise and signal. Used in esti-
mating onset times. See [IDC5.2.1]

Alpha List

(ARS) List of stations and phases contrib-
uting to a S/H/I event location.

analyst

Personnel responsible for reviewing and
revising the results of automatic process-
ing.

API

Application Program Interface.

AR

Auto-Regressive. A predictive model
used to estimate current parameter val-
ues based upon earlier data values.

ARAIC

Auto-Regressive Akaike Information Cri-
terion. A method that uses an auto-
regressive model to implement the
Akaike Information Criterion. See AIC.

array

Collection of sensors distributed over a
finite area (usually in a cross, triangle, or
concentric pattern) and referred to as a
single station.

arrival

Detected signal that has been associated
to an event. First, the Global Association
(GA) software associates the detection
to an event. Later, during interactive
processing, many arrivals are confirmed,
improved, or added by visual inspection.
G1

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G2
ARS

Analyst Review Station. This application
provides tools for an analyst to refine
and improve the event bulletin by inter-
active analysis.

arsoc (DFX only)

Generic object in DFX that combines
arrival and association information
together.

ASCII

American Standard Code for Information
Interchange. Standard, unformatted
256-character set of letters and num-
bers.

associated phase

Phase that is associated with an S/H/I
event.

attribute

(1) Database column. (2) Characteristic
of an item; specifically, a quantitative
measure of a S/H/I detection such as
azimuth, slowness, period, or amplitude.

AutoSeisRcl

Automatic Seismic Recall processing. A
DFX Scheme application run in post-
analysis processing.

azimuth

Direction, in degrees clockwise with
respect to North, from a station to an
event.

B

back azimuth

Direction, in degrees, from an event to a
station.

beam

(1) Waveform created from array station
elements that are sequentially summed
after being steered to the direction of a
specified azimuth and slowness. (2) Any
derived waveform (for example, a fil-
tered waveform).

beam recipe

Table of parameters that describe how to
create and use a beam. Parameters may
include the channels to use in forming
the beam, the filter to use, the direction
and slowness in which to steer the
beam, and the snr threshold to apply for
detection.

Beamer

Application that prepares origin beams
for interactive analysis.

beamform

Sum a set of waveforms from array sta-
tion elements with time delays intro-
duced to compensate for the time it
takes a wave to travel across the array.

best beam

Beam, in the set of all detection beams,
with the highest signal-to-noise ratio for
an arrival.

blockage (hydroacoustic)

Obstruction in the direct oceanic path
between the source and the receiver.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0
BOTF

Beam-on-the-Fly processing. A DFX
Scheme application that creates origin
beams and can be called from within
ARS.

bulletin

Chronological listing of event origins
spanning an interval of time. Often, the
specification of each origin or event is
accompanied by the event’s arrivals and
sometimes with the event’s waveforms.

C

CDS (DFX only)

See Coincidence Detection Space.

cepstrum (cepstral)

Fourier transformation of a power spec-
trum whose magnitudes have been
scaled logarithmically.

chan.

Channel.

channel

Component of motion or distinct stream
of data.

circular file

Fixed-length data file constructed such
that, once full of data, new data over-
write the oldest data.

class

Defined structure for a set of similar
objects that share common specified
characteristics, including data items and
operations.

cluster (DFX only)

Group of candidate detections with simi-
lar arrival angles and slowness values.
Clusters are created from the Primary
Detection Space of the infrasonic detec-
tor.

CMR

Center for Monitoring Research.

coherence detector

Process that declares a transient signal
detection when the spatial coherence
across an array rises above a given
threshold.

coherence trace (DFX only)

One of three waveforms derived from
the spatial coherence level observed in
the Primary Detection Space of the infra-
sonic detector.

coherent beam

Beam formed from unrectified waveform
data (usually zero-meaned), which uti-
lizes phase information in the waveform
to enhance coherent energy at the azi-
muth and slowness of the beam and to
suppress random noise.

Coincidence Detection Space (DFX only)

Space that is used in infrasonic detection
processing wherein final detections are
determined from candidate detections
created in the Primary Detection Space.
Both spatial coherence and energy level
are considered in determining the final
detections.
G3

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G4
coincidence detector

Detector that requires both the signal
energy and the spatial coherence to rise
above thresholds in the same time win-
dow.

commit

Process of saving changes made to the
database.

complexity

Measure of the teleseismic P phase that
compares energy in the initial signal with
energy in the coda. This measure can be
used in event characterization.

Comprehensive Nuclear-Test-Ban Treaty
Organization

Treaty User group that consists of the
Conference of States Parties, the Execu-
tive Council, and the Technical Secretar-
iat.

Computer Software Component

Functionally or logically distinct part of a
computer software configuration item;
possibly an aggregate of two or more
software units.

Computer Software Configuration Item

Aggregation of software that is desig-
nated for configuration management
and treated as a single entity in the con-
figuration management process.

configuration

(1) (hardware) Arrangement of a com-
puter system or components as defined
by the number, nature, and interconnec-
tion of its parts. (2) (software) Set of

adjustable parameters, usually stored in
files, which control the behavior of appli-
cations at run time.

container

Type of generic object used to hold other
objects (similar to an array). All of the
objects in the container must be of the
same type.

continuous waveform data

Waveform data that are transmitted to
the IDC on a nominally continuous basis.

control flow

Sequence in which operations are per-
formed during the execution of a com-
puter program.

COTS

Commercial-Off-the-Shelf; terminology
that designates products such as hard-
ware or software that can be acquired
from existing inventory and used with-
out modification.

CSC

Comprehensive Nuclear-Test-Ban Treaty
Organization.

CSCI

Computer Software Configuration Item.

CTBTO

Comprehensive Nuclear-Test-Ban Treaty
Organization.

CVAR datastore

C variable data storage area (sometimes
referred to as the CVAR table) that
stores name-value pairs usually provided
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0
by application configuration files and
command line arguments. The values are
available through “C” and the Scheme
API.

D

DACS

Distributed Application Control System.
This software supports inter-application
message passing and process manage-
ment.

dB

Decibel.

db<tablename> (DFX only)

Generic object with fields that have a
one-to-one correspondence with the
database table attributes.

depth phase

Seismic signal that travels upwards from
the hypocenter, reflects off the earth’s
surface, and travels the remaining path
as a typical refracted phase. It is usually
denoted by a phase name starting with a
lower case “p” or “s” that indicates the
upward leg of the path.

detection

Probable signal that has been automati-
cally detected by the Detection and Fea-
ture Extraction (DFX) software.

detection beam

Same as a f-k beam.

detection object (or det)

Type of generic object that holds the
working attributes of a detected signal.

DFX

Detection and Feature Extraction. DFX is
a programming environment that exe-
cutes applications written in Scheme
(known as DFX applications).

DFX/lib<name> function (DFX only)

Scheme symbol that is bound to a C
function in the named DFX library. The
function is then available from the
Scheme interface like any other Scheme
function.

DLMan

Disk Loop Manager. An IDC application
in the Data Services CSCI.

DPSNR

Automatic Depth-Phase Signal-to-Noise
Ratio processing. A DFX Scheme appli-
cation that makes a special snr measure-
ment of depth-phase arrivals.

E

ema

Emergence angle.

epoch time

Number of seconds after January 1,
1970 00:00:00.0.

event

Unique source of seismic, hydroacoustic,
or infrasonic wave energy that is limited
in both time and space.
G5

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G6
event characterization

IDC process of characterizing events by
features of signals recorded at one or
more stations.

event screening

IDC process that produces the SSEB by
removing events of clear natural origin
from the SEB.

F

f-k beam

Coherent beam steered to the azimuth
and slowness of the maximum peak in
an f-k spectrum.

f-k spectrum

Result of a data transformation from the
time-space domain to the frequency-
wavenumber domain. Useful in deter-
mining the direction and slowness of an
arriving phase.

F-statistic

Measure that indicates the degree of
spatial coherence of a waveform across
an array of sensors. This measure is
approximately equal to the ratio of the
spatially coherent energy to the incoher-
ent energy scaled by the number of non-
collocated sensors.

features

Various measurements of a waveform
segment used to characterize a detec-
tion.

field

(1) Attribute of a generic object.
(2) Attribute in a database table (the
name of the column).

FIR

Finite Impulse Response (usually in refer-
ence to a filter).

G

GA

Global Association application. GA asso-
ciates S/H/I phases to events.

garbage collect

Background activity of searching mem-
ory used for dynamically allocated data
to find areas that are no longer in use
and free them. This is performed auto-
matically in Scheme and other Lisp dia-
lects.

gc

See garbage collect.

generic object

Construct used to hold and manipulate
data. The type of object determines the
data that it can contain. Also known as
an object or GObj.

global Scheme function

Scheme function that is available to all
DFX applications and is defined in the
the DFXdefault.scm file.

GObj

See generic object.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0
H

hydroacoustic

Pertaining to sound in the ocean.

HydroDet

Automatic Hydroacoustic Detection pro-
cessing. A DFX Scheme application that
makes detections and measures features
on hydroacoustic waveform data.

HydroEvch

Automatic Hydroacoustic Event Charac-
terization processing. A DFX Scheme
application that computes hydroacous-
tic measures relative to events typically
formed by the seismic network. It can be
used to rule out the possibility that the
event occurred in water.

Hz

Hertz.

I

IDC

International Data Centre.

IIR

Infinite Impulse Response (filters also
referred to as recursive filters).

IMS

International Monitoring System.

in-line code

Set of source code that performs a spe-
cific task but is not organized as an inde-
pendent function.

incidence angle

Angle relative to vertical that a wave is
travelling when it reaches the receiver.

InfraDet

Automatic Infrasonic Detection process-
ing. A DFX Scheme application that
makes detections and measures features
on infrasonic waveform data.

infrasonic (infrasound)

Pertaining to low-frequency (sub-audi-
ble) sound in the atmosphere.

initsite (DFX only)

Class of generic objects that contain site-
specific data, in particular recipe parame-
ters. The initsite objects are specialized
to each DFX Scheme application.

IntHydroRcl

Interactive Hydroacoustic Recall process-
ing. A DFX Scheme application that is
called from ARS to measure features on
analyst modified or added hydroacoustic
detections.

intrinsic Scheme function

Function that is part of the original
Scheme language or libscheme.

IntSeisRcl

Interactive Seismic Recall processing. A
DFX Scheme application that is called
from ARS to measure features on analyst
modified or added seismic detections.
G7

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G8
IPC

Interprocess communication. The mes-
saging system by which applications
communicate with each other through
libipc common library functions. See
tuxshell.

J

jdate

Modified Julian Date. Concatenation of
the year and three-digit Julian day of
year. For example, the jdate for 07
March, 2000, is 2000067.

L

larray

Large array.

LISP

List Processing programming language.

local Scheme function

Scheme function that is defined within
an application’s source code file.

LR

Rayleigh wave. A seismic phase that
travels along the surface of the earth.

LTA (or LTAV)

Long Term Average. A running average
of the absolute value or squared value of
a waveform. The averaging window is
long compared to the short-term aver-
aging window.

M

magnitude

Empirical measure of the size of an event
(usually made on a log scale).

magnitude slowness

Magnitude of the slowness vector.

Map

Application for displaying S/H/I events,
stations, and other information on geo-
graphical maps.

mask

Array of start and end indices for defec-
tive data samples in a time series used to
later identify the defective data.

mb

Magnitude estimated from seismic body
waves.

mHz

Millihertz. One thousandth of one cycle
(occurrences, alterations, pulses) per sec-
ond.

ML

Magnitude estimated from seismic
waves measured near the source.

N

ncc (DFX only)

Abbreviation for the normalized cross-
correlation.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0
nil

(1) Empty set. (2) Specific value in
Scheme that, in a conditional statement,
evaluates to false.

NoiseAmp

Automatic Noise Amplitude Estimation.
A DFX Scheme application that mea-
sures the noise level at stations that did
not detect signals from a given event.

normalized cross-correlation

Value of a cross-correlation coefficient in
which the underlying cross-correlation
function between two zero-mean pro-
cesses, x and y, has been normalized by
the square root of the product of the
alignment-dependent variances in x and
y.

O

object

Same as a generic object.

origin

Hypothesized time and location of a
seismic, hydroacoustic, or infrasonic
event. An event may have many origins.
Characteristics such as magnitudes and
error estimates may be associated with
an origin.

origin beam

Coherent beam steered to the estimated
event origin.

OriginBeam

Automatic Origin Beam processing. A
DFX Scheme application that computes
and saves origin beams for use in inter-
active analysis.

P

P phase

Seismic wave that travels from the event
to the station as a compressional wave
through the solid earth.

par

See parameter.

parameter

User-specified token that controls some
aspect of an application (for example,
database name, threshold value). Most
parameters are specified using [token =
value] strings, for example,
dbname=mydata/base@oracle.

parrival

Database table that contains the pre-
dicted arrivals and associations for ori-
gin-based amplitude measurements.

PcP phase

Seismic compressional wave that reflects
off the core-mantle boundary.

PDS (DFX only)

See Primary Detection Space.

phase

Arrival that is identified based on its path
through the earth.
G9

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G10
picket

(1) Sample in a discrete frequency spec-
trum. (2) Point in a discretely sampled
two-dimensional slowness-plane.

PIDC

Prototype International Data Centre.

pipeline

Flow of data at the IDC from the receipt
of communications to the final auto-
mated processed data before analyst
review.

PKP phase

Seismic compressional wave that travels
from the event to the station as a com-
pressional wave through the crust, man-
tle, and outer core.

polarization analysis

Analysis to determine the propagation
vector that describes particle motion.
Used at seismic 3-C stations.

post-analysis processing

Automated processing that occurs after
analysts have reviewed the automatic
event bulletins.

post-location processing

Software that computes various magni-
tude estimates and selects data to be
retrieved from auxiliary stations.

Primary Detection Space (DFX only)

Six-dimensional space used in infrasonic
detection processing to hold candidate
detections. The six dimensions of this
space are: time (processing window
time), frequency (bandpass filtering

applied to the waveforms), space (group
of sensors), arrival azimuth, magnitude
slowness, and spatial coherence level.

primary stations

Stations that make up the primary seis-
mic network of the IMS. Primary stations
send data continuously to the IDC.

process

Function or set of functions in an appli-
cation that perform a task.

product

Bulletins, data, and other information
collected, produced, and distributed by
the IDC.

Q

QC

Quality Control.

QCStats

Quality Control Statistics. A DFX Scheme
application that computes and saves a
variety of statistics related to the input
waveform data quality.

quefrency

Time-delay axis with units of seconds for
a cepstrum.

query

Request for specific data from a data-
base.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0
R

raw waveform

Waveform data as they are received
from a station.

RDBMS

Relational Database Management Sys-
tem.

REB

Reviewed Event Bulletin; the bulletin
formed of all S/H/I events that have
passed analyst inspection and quality
assurance review.

recall processing

Type of DFX processing that updates
arrival features based on changes made
during analyst review.

recipe

Collection of related parameters used in
performing a specific task. Recipe
parameters are usually defined in par
files.

regional

(1) (distance) Source-to-seismometer
separations between a few degrees and
20 degrees. (2) (event) Recorded at dis-
tances where the first P and S waves
from shallow events have traveled along
paths through the uppermost mantle.

rms

Root mean square.

rollback

Process of returning a database to its
state at the last commit to undo errone-
ous updates.

S

sbcc (DFX only)

Scheme symbol for a container of score
board containers used in infrasonic
detection processing.

sbsnr

Signal-to-noise ratio measured on a
standard beam.

schema

Database structure description.

Scheme

Dialect of the Lisp programming lan-
guage that is used to configure some
IDC software.

screen container

Remove objects from a container
because they either do not meet some
criteria or they already exist in the data-
base.

seaz

Station-to-event azimuth. Usually pre-
dicted from the origin location except in
the detection table where it is estimated
from the data.

SEB

Standard Event Bulletin; a list of analyst
reviewed S/H/I events and event param-
eters (origin and associated arrival infor-
G11

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G12
mation). The SEB is similar to the REB,
but also includes event characterization
parameters and event screening results
for each event.

SegArch

Segment Archiving. A DFX Scheme
application that extracts, beamforms,
and stores waveform data relevant to an
event (occurs after analyst review).

SeisDet

Automatic Seismic Detection process-
ing. A DFX Scheme application that
makes detections and measures features
on seismic waveform data.

SeisEvch

Automatic Seismic Event Characteriza-
tion processing. A DFX Scheme applica-
tion that makes measurements on
seismic waveforms in a time window
predicted to contain signals from an
event in order to characterize the event.

seismic

Pertaining to elastic waves traveling
through the earth.

side effect (DFX only)

Change in value of a function parameter
or global variable by a function without
explicitly returning the modified value.
Side effects in DFX are most often modi-
fications to input arguments of a func-
tion.

SIOD

Scheme In One Defun (version of
Scheme).

site

Location of a sensor within a station.

slowness

Inverse of velocity, in seconds/degree; a
large slowness has a low velocity.

slowness vector

Vector in 2-D wavenumber space. The
magnitude of the vector corresponds to
the inverse of the phase velocity of a
traveling plane wave. The direction of
the vector is usually defined as being
from the station to the source.

slplcc (DFX only)

Scheme symbol for container of slow-
ness plane containers (used in infrasonic
detection processing).

SMULT analysis (DFX only)

Source Multiplicity analysis. A method to
find evidence in a signal for a multiple
source event such as ripple fire from a
mining explosion.

snr

Signal-to-noise ratio.

spectrum (spectral)

Plot of the energy contained in wave-
forms as a function of frequency.

splp

Short-period to long-period amplitude
ratio used in event characterization.

spvar

Spectral Variance. A database table that
contains information about the
detrended log spectrum of a signal.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0
SQL

Structured Query Language; a language
for manipulating data in a relational
database.

SSEB

Standard Screened Event Bulletin; similar
in content and format to the Standard
Event Bulletin (SEB), but does not
include events that were screened out by
a standard set of event screening criteria.

sta

Station.

STA (or STAV)

Short-term average. A running average
of the absolute value or squared value of
a waveform. The averaging window is
short in duration compared to the LTA.

STA/LTA detector

Process that declares a detection of a
transient signal when the ratio between
the STA and LTA time series rises above a
given threshold.

standard beam

Beam in which the delays between sta-
tions are based on a specific pre-defined
set of recipe parameters (referred to as
the standard recipe parameters).

StaPro

Station Processing application for S/H/I
data.

station

Collection of one or more monitoring
instruments. Stations can have either
one sensor location (for example, BGCA)
or a spatially distributed array of sensors
(for example, ASAR).

steer

Construct a beam using time delays con-
sistent with a particular azimuth and
slowness.

subprocess

Function or set of functions that perform
a task subordinate to a process.

T

teleseismic

1) (distance) Source-to-seismometer
separations of 20 degrees or more. (2)
(event) Recorded at distances where the
first P and S waves from shallow events
have traveled paths through the mantle/
core.

TF (DFX only)

Time Frequency analysis.

third moment of frequency

Measure of the frequency content of a
signal. Used in event characterization.

TI recipe

Time Interval recipe. Parameters used by
DFX to specify a time interval of data to
read or process.
G13

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G14
time series

Time ordered sequence of data samples.
Typically a waveform or derived from
waveforms, such as a beam.

TM

Threshold monitoring. A technique used
to track the minimum detectable event
size based on noise levels at stations in
the detecting network.

TMF

See third moment of frequency.

transient signal

Packet of energy of finite duration that
stands out from the background ambient
noise.

trigger

Object used in DFX to indicate a poten-
tial transient signal for a given beam.
Triggers for a set of beams are collected
to form detections.

tuple

Database record (a row of a table).

tuxshell

Process in the Distributed Processing
CSCI used to execute and manage appli-
cations. See IPC.

U

UNIX

Trade name of the operating system
used by the Sun workstations.

V

vector slowness

Magnitude slowness with a direction.

vernier f-k spectrum (DFX only)

F-k spectrum generated by pre-aligning
waveforms to a vector slowness; it is
used to refine an initial coarse estimate.
The vernier f-k spectrum covers a much
smaller area in wavenumber space at a
higher resolution to provide an improved
slowness estimate.

W

waveform

Time-domain signal data from a sensor
(the voltage output) where the voltage
has been converted to a digital count
(which is monotonic with the amplitude
of the stimulus to which the sensor
responds).

wfdata object

Type of generic object that holds wave-
forms and site related information. The
waveforms are actually contained in
wfmem objects that are referenced in
the wfdata objects.

wfmem object

Type of generic object that holds time
series data and the corresponding wfdisc
database entries. Used in conjunction
with wfdata objects.
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0
workstation

High-end, powerful desktop computer
preferred for graphics and usually net-
worked.

wrapper function

Function used to provide an alternative
interface to another function.
G15

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

S o f t w a r e
I D C D O C U M E N T A T I O N

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0
I ndex

A

administrative processing 36, 405, 406
affiliation 28
amp3c 28, 445, 446, 447
amplitude 28, 445, 446, 447, 448, 450, 451
Analyst_Log 7
apma 28, 445, 446, 447
application par file 25
arrival 29, 445, 446, 447, 449, 450, 451
ARS 6, 12
assoc 29
Automatic Depth-Phase SNR 7, 218

description 10
Automatic Hydroacoustic Detection 6, 290

description 10
Automatic Hydroacoustic Event

Characterization 8, 323
description 10

Automatic Infrasonic Detection 6, 340
description 10

Automatic Noise Amplitude Estimation 7,
232

description 10
Automatic Origin Beam 6

description 10
OriginBeam 148

Automatic Seismic Detection 6, 80
description 10

Automatic Seismic Event Characterization 7,
249

description 10
AutoSeisRcl 7, 202

architecture 204
database attributes written 447
data updated 207
description 10
Initialize for Residual Update 210
Initialize Site 211
input parameters 205
Perform Recall Signal Processing 212,

213
Acquire Waveforms 214
architecture 214
Create Detection 215
Estimate Arrival Features and Write

to Database 217
Identify Best Beam 216
Revise Detection Attributes 216
Screen Detections 216

Query for Arrivals 208

B

Beamer 12
beam object 72
beam-rec object 72
BOTF 164

architecture 165
database attributes written 446
data produced 168
Extract Parameters 168
Generate and Write Origin Beam 170,

178
Acquire Waveforms 180
architecture 179
Check Quality of Waveforms 180
Compute Time Intervals 180
Create Beam 181
I1

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

▼ Index

S o f t w a r e
I D C D O C U M E N T A T I O N

I2
Write to Database 182
Initialize Sites 169, 170

architecture 172
Compute Time Intervals 175
Create initsite 173
Create Waveform Containers 176
Populate initsite Container 177
Query for Sites 173
Read Travel-time Tables 174

input parameters 166

C

catch 76
ceppks 29, 448
check-arrival-depth-phase 195
complexity 29, 448
compute-complexity 285
compute-det-amp-best-beam 127
compute-origin-beams 161, 181, 420
compute-site-origin-ti 180, 417

functional interface 64
compute-snr 105, 118, 306
compute-splp 281
compute-stations-ti 175
compute-tf 277
compute-ti-parameters 418
compute-tmf 279
container object 21
containers

internal screening 74
looping over contents 74

conventions
data flow symbols vi
typographical vii

create-dbamp3c-from-
detection 146

create-dbapma-from-detection 137
create-dbdetection-from-
detection 142

create-depth-phase-initsite 224
create-detection-initsite 81, 88

create-gobj 71, 111
create-hydro-detection-
initsite 295

create-hydro-recall-initsite 317
create-keyed-list-container 73
create-recall-det-from-
dbarrival 215

create-recall-initsite 190, 211
create-sbsnr-dbamplitude-from-
det 144

create-secondary-beam-element-
object 395

create-secondary-beam-recipe-
container 396

create-station-event-beam 170, 178
CVAR 16
CVAR datastore 20

setting and retrieving parameters 75

D

DACS 6, 27, 38
database

opening and closing 41
querying 41
screening containers 43
writing 44

database description 441, 442
database objects 42
db<table> object 72
dbconnection object 72
define-gobj-class 71
delete-<name>-recipe-cvar 76
delete-redundant-det-objects 386
depart-with-grace 403
detection 29, 445, 446, 447, 449, 450, 451
detection object 72
DFX

administrative processing 36, 405, 406
application abbreviations 11
command line 25
database operations 40
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Index

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0
database tables used 443
functional description 30
functionality 8
functions 22
hydroacoustic processing 34, 290
infrasonic processing 36, 339, 340
library functions 22
Scheme files 11
seismic processing 32, 80
shared functionality 30, 40

DFX-botf.scm 164
DFXdefault.scm 22
DFX-depth-phase-snr.scm 218
DFX-detection.par 80, 290
DFX-detection.scm 80
DFX-evch-hydro.par 323
DFX-evch-hydro.scm 323
DFX-evch.scm 249
DFX-hydro-detection.scm 290
DFX-hydro-recall.scm 312
DFX-infra-detection.scm 340
DFX-int-recall.scm 183
DFX-noiseamp.scm 232
DFX-originbeam.par 148
DFX-originbeam.scm 148
DFX-recall.scm 202
DPSNR 218

architecture 220
database attributes written 447
data produced 223
Estimate Depth-phase SNR 225, 226

Acquire Waveforms 227
architecture 227
Find Best Pair 230
Make Amplitude Pairs 229
Make Amplitude Record 230
Measure Amplitudes 228
Write to Database 230

Initialize Site 224
input parameters 221
Query for Depth-phase Arrivals 223

E

error handling 76
extract-gob-attr 111
extract-gobj-attr 73

F

find-det-best-beam 216
find-detections 119, 307
find-missing-data 427
find-recall-best-beam 196
find-triggers 119, 306
functional description 30

G

GA 6
gc-wfdata-con 247
generic objects 21

defining 71
get-data-interval 65

functional interface 66
get-infra-waveforms 349
get par 75
get-phases-from-ti-and-beam-
recs 174

get-processing-interval 65
functional interface 66

getspar 75
global libraries 26
global Scheme functions 22

H

hydro_features 29, 449, 450
hydroacoustic processing 34, 290
HydroDet 290

Acquire Waveforms 296
architecture 292
I3

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

▼ Index

S o f t w a r e
I D C D O C U M E N T A T I O N

I4
database attributes written 449
data produced 295
initialize sites 295
input parameters 293
Make Detections 297, 304

architecture 304
Compute SNR 306
extract Parameters 305
Filter Data 305
Generate Detections 307
Generate Triggers 306

Measure Hydroacoustic Detection
Features 300, 307
architecture 308
Correct Waveform for Instrument

Response 309
Estimate Hydroacoustic

Features 309
Extract Parameters 309
Revise Detection Attributes 310

Revise Onset Times 298
Screen and Submit Results to

Database 301
Screen Detections by Time 299

HydroEvch 323
architecture 325
database attributes written 450
data produced 328
Estimate Event Characteristics 329, 330

Acquire Waveforms 334
architecture 332
Compute Time Interval 333
Estimate Amplitudes 335
Predict Arrivals 334
Screen and Submit Results 337

Initialize Sites 329
input parameters 326
Query for Origins 328

I

infra_features 29, 451

infra-beam-from-score-boards 357,
377

infra-cross-correlate-pairs 353,
369

InfraDet 340
Acquire Waveforms 349
architecture 343
database attributes written 451
data produced 346
Estimate Signal Amplitude 363, 391

architecture 392
Create Beam-recipe Container 394
Estimate Amplitude 397
Extract Parameters 393
Select Best Measurement 398

Generate Coherence Traces as
Beams 356, 376
architecture 377
Generate Coherence Trace from

Score Boards 377
Generate dbwfdisc Object 379
Write wfdisc Record 380

Generate Coincidence Detection Space
(CDS) 358

Generate Primary Detection Space
(PDS) 352, 366
architecture 367
Cross-correlate Waveforms 369
Evaluate and Refine Slowness

Planes 373
Filter Waveforms 368
Generate Slowness Planes 370

Initialize Parameters 347
input parameters 344
Remove Redundant Detections 363,

381
architecture 382
Create dbcontainers 383
Create dbobjects 384
Delete Redundant Detections 386
Extract Parameters 383
Put dbobjects into dbcontainers 385
Screen for Existing Entities 387
Set arids into dbobjects 385
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Index

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0
Write Non-Redundant Detections 366,
399
Roll Back Database 403
Test for Empty Input Container 400
Test for Unsuccessful Write 402
Write Container 402

infra-fir-filter-data 353, 368
infra-generate-slowness-planes-
cc 353, 370

infra-peak-eval-slow-planes 353,
373

infrasonic processing 36, 339, 340
infra-wvfrm-eval-slow-planes 358
init-<name>-recipe 348
init-<recipe_name>-recipe 21
initialize-for-residual-
update 210

initialize-for-travel-time 189
initialize-net-sites 155, 238, 261,

329, 412
initialize-sites 173
initialize-station-sites 169
initsite object 46, 72

creating 52
database objects stored in 47
parameters stored in 47
recipes stored in 48
waveform objects stored in 49

instrument 29
instrument-response-files-
exist? 363

Interactive Beam on the Fly 6, 164
description 10

Interactive Hydroacoustic Recall 6
description 10
IntHydroRcl 312

Interactive Seismic Recall 6, 183
description 10

interface
external user 38
operator 38
other IDC systems 37

IntHydroRcl

architecture 314
database attributes written 450
Data Produced 316
Extract Station List 317
Initialize Site 317
input parameters 315
Perform Recall Signal Processing 318,

319
Acquire Waveforms 321
architecture 320
Correct Waveform for Instrument

Response 321
Estimate Hydroacoustic

Features 321
Generate Detection Object 320

Query Database for Arrivals 317
intrinsic Scheme functions 22
IntSeisRcl 183

architecture 185
database attributes written 446
data written 188
Initialize Parameters 189
Initialize Site 190
Initialize Travel-time Tables 189, 192

architecture 193
Query for Sites 193
Read Travel-time Tables 193

input parameters 186
Perform Recall Signal Processing 191,

194
Acquire Waveforms 196
architecture 195
Estimate Arrival Features and Write

to Database 200
Identify Best Beam 196
Identify Depth-phase Arrivals 195
Revise Detection Attributes 198

IPC 27

L

lastid 29, 46
libgdi 16, 71
I5

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

▼ Index

S o f t w a r e
I D C D O C U M E N T A T I O N

I6
libgobj 21, 71
libloc 18

interface 64
libpar 16, 75
local Scheme functions 23

M

make-and-write-tm-beams 93
make-beamform-fk 129
make-beam-from-data 104, 116, 305
make-det-amplitudes 138
make-det-beams 112, 140
make-detections 96, 113
make-fk 128
make-gobj-name 71
make-hydro-detections 297
make-null-beam 104
make-pre-existing-arrival-
beams 81, 94, 108

make-smult 283
man pages iii
Map 12
map-container 74
measure-amplitude 397
measure-arrival-amplitudes 274,

275
measure-data-availability 430
measure-detection-amplitude 228
measure-detection-features 99, 132
measure-detection-
polarization 131

measure-hydro 309
measure-hydro-detection-
features 300

measure-hydro-recall-
features 321

measure-infra-amplitude 364
measure-origin-amplitudes 245,

272, 334
measure-recall-features 200
memory management 77

mstpar 75
mstspar 75

N

NoiseAmp 232
architecture 234
database attributes written 448
data produced 237
Estimate Noise Amplitude 239, 240

Acquire Waveforms 244
architecture 241
Check Event-to-Station

Distance 243
Estimate Origin Amplitudes for Pre-

dicted Arrivals 245
Extract Associated Arrivals for this

Origin 244
Extract Parameters 242
Write Estimates for Predicted

Arrivals 247
Extract Parameters 239
Initialize Parameters 237
Initialize Sites 238
input parameters 235
Query the Database 238

O

origerr 29
origin 29
OriginBeam

architecture 150
database attributes written 445
data produced 153
Generate and Write Origin Beams 155,

156
Acquire Waveforms 159
Extract Parameters 158
Generate Beams 161
Identify ti-recipe 159
Write Beams 162
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Index

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0
initialize sites 155
input parameters 151
Query for Origins 154

P

parameters 20
par files 24
parrival 29, 448, 450
process-depth-phase-arrival 225
process-origin 414
process-origin-for-initsite 155,

239, 264, 329
process-origins 413
process-qcstats 426
process-recall-arrival 191, 203,

212, 318

Q

QCStats 423
architecture 424
Calculate Waveforms Availability 429,

437
architecture 438
Compare Requested and Adjusted

Available Data
Duration 440

Extract Parameters 439
Fill-in qc-stats Object with Data

Availability 440
database attributes written 452
data produced 426
Extract Quality-control Parameters 428
Fill-in qc-stats Object 430
Identify Missing Waveforms 432

architecture 433
Seek Match to sta-i and chan-i in

Data Container 435
Set Attributes into qc-stats

Object 435

Write Results to Database 436
input parameters 425
Write Results to Database 431

qcstats 29, 452
qc-waveforms

functional interface 70
qc-waveforms-all

functional interface 70
Quality Control Statistics 423

description 10
query-for-dbarrival-
container 208

query-for-dbarrival-depth-
phases 223

query-for-dbarrivals-with-
beams 110

query-for-dborigin-by-time 154,
260

query-for-dborigin-container 412
query-for-dbsite-by-sta 193
query-for-lastid 46
query-for-stations-site-
container 173

query-for-wfdata-by-sta-chan-
time

functional interface 58
query-for-wfdata-container 176
query-for-wfmem-by-sta-chan-time

functional interface 62
query-for-wfmem-container 176

R

read-default-travel-time-
tables 64, 174

read-detection-waveforms 81, 91
read-hydro-detection-
waveforms 296

read-waveforms 65, 419
functional interface 69

read-waveforms-for-initsite 159,
244, 270, 334
I7

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

▼ Index

S o f t w a r e
I D C D O C U M E N T A T I O N

I8
read-waveforms-for-recall 196, 214
REB 8
revise-detection-estimates 97
revise-det-onset 125
revise-hydro-det-attributes 310
revise-hydro-detection-
estimates 298

revise-recall-estimates 198, 216

S

say-<name>-object-class 71
say-beam-object-class 72
say-beamrec-object-class 72
say-db<table>-object-class 72
say-dbconnection-object-class 72
say-det-object-class 72
say-initsite-object-class 72
say-trig-object-class 72
say-wfdata-object-class 72
say-wfmem-object-class 72
Scheme

configuration 24
Scheme files

general structure 24
screen-arrival-dbamplitude-by-
existing 274, 276

screen-ceppks-by-existing-
ceppks 284

screen-complexity-by-existing-
complexity 286

screen-detection-container 98
screen-detections-by-time 299
screen-existing-hevch-
parrivals 337

screen-hydro-detections 301
screen-infra-dbarrivals-by-
existing 387, 389

screen-infra-dbdetects-by-
existing 387, 389

screen-infra-dbinfra_features-
by-existing 387, 389, 390

screen-origin-dbamplitude-by-
existing-dbamplitude 273

screen-recall-detection 216
screen-splp-by-existing-splp 282
screen-spvar-by-existing-
spvar 284

screen-tf-by-existing-tf 278
screen-tmf-by-existing-tmf 280
SEB 7
SegArch 406

architecture 408
database attributes written 451
data produced 411
Initialize Site-specific Parameters 412
input parameters 409
Perform Segment Archiving 413, 415

Acquire Waveforms 419
architecture 416
Calculate Distance-based Time

Intervals 417
Calculate Station-to-Event

Distance 418
Check Waveform Quality 420
Extract Parameters 417
Generate Beams 420
Generate Distance-based Beam

Recipes 419
Write Beams to Database 422

Query for Origins (in Interval) 412
Segment Archiving 8, 406

description 10
SeisDet 80

Acquire Waveforms 91
architecture 82
database attributes written 444
data produced 87
Generate and Write TM Beams 93, 101

architecture 102
Extract Parameters and Save and Re-

set stav-len 103
Generate Beam 104
Generate Null Beam 104
Generate STA and LTA 105
Write TM Beam to UNIX
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Index

D e t e c t i o n a n d F e a t u r

I D C - 7 . 1 . 1 J u n e 2 0 0
Filesystem 106
Generate Pre-existing Arrival

Beams 94, 108
architecture 109
Extract Parameters from Dbarrival

Object (and Set into Detec-
tion Object) 111

Generate Detection Beam 112
Generate Detection Object 111
Query Database (Arrivals with

Beams) 110
Initialize Sites 88
input parameters 84
Perform Detection Processing 96, 113

architecture 114
Evaluate Triggers and Generate

Detections 119
Extract Beam-Name 115
Extract Parameters 114
Generate Detection Beam 116
Generate STA and LTA (and SNR and

state) 116
Generate Triggers 118

Perform Feature Extraction 99, 132
architecture 133
Create and Write 3-C

Amplitudes 145
Create and Write Dbarrival

Object 135
Create and Write Dbdetection

Object 142
Estimate and Write Detection

Amplitude 138
Estimate and Write sbsnr

Amplitude 144
Extract Parameters 134
Generate and Write Dbapma

Object 137
Generate and Write Detection

Beams 140
Revise Extracted Estimates 97, 122

architecture 123
Estimate Amplitude (Best

Beam) 127

Estimate Polarization 131
Extract Parameters 124
Generate F-k Spectrum 128
Generate F-k Spectrum via

Beam 129
Revise Onset Time Estimate 125

Screen Defective and Redundant
Detections 98

SeisEvch 249
architecture 251
database attributes written 448
data produced 259
Estimate Event Characteristics 264, 267

Acquire Waveforms 270
architecture 267
Extract Parameters 270
Perform Complexity Processing 285
Perform First Motion Amplitude

Processing 275
Perform Observed Amplitude

Processing 273
Perform Short-period-versus-long-

period Processing 281
Perform Source Multiplicity

Processing 283
Perform Theoretical Amplitude

Processing 271
Perform Third-moment-of-frequen-

cy Processing 279
Perform Time-frequency

Processing 277
Initialize Sites 261
input parameters 252
Query for Origins 259

seismic processing 32, 80
select-dbamplitude-object-to-
report 398

sensor 29
set-cvar! 75
set-cvar-from-file! 47, 75
set-gobj-attr 111
set-gobj-attr! 73
SigPro 12
site 29
I9

e E x t r a c t i o n (D F X) - S c h e m e F i l e s

1

▼ Index

S o f t w a r e
I D C D O C U M E N T A T I O N

I10
sitechan 29
site-hydro-blocked 333
site par file 25
software configuration hierarchy 3
splp 29, 448
spvar 29, 449
StaPro 6
station processing 65
submit-aux 162, 247
submit-container-db 44, 139, 146,

182, 380, 402
submit-db-hydro-results 302
submit-object-db 44, 136, 138, 143

T

thirdmom 29, 449
throw-tag-error 76
timefreq 30, 449
trigger object 72
tuxshell 27, 37

U

update-or-insert-<type>-by-
<field> 45

W

WaveExpert 6
waveforms

reading 58
wfdata object 58, 72

contents 59
wfdisc 30, 445, 446, 451, 452
wfmem object 61, 72
wftag 30, 445, 452
write-db-beam 379
write-qcstats 431, 436
write-tm-sta 106
 J u n e 2 0 0 1 I D C - 7 . 1 . 1

D e t e c t i o n a n d F e a t u r e E x t r a c t i o n (D F X) - S c h e m e F i l e s

	Cover Page
	Notice Page
	Contents
	Figures
	Tables
	About this Document
	Purpose
	Scope
	Audience
	Related Information
	Using this Document
	Conventions

	Chapter 1: Overview
	Introduction
	Functionality
	Identification
	Status of Development
	Background and History
	Operating Environment
	Hardware
	Commercial-Off-The-Shelf Software

	Chapter 2: Architectural Design
	Conceptual Design
	DFX Data Representations
	Parameters
	CVAR Datastore
	Generic Objects

	DFX Functions
	Intrinsic Scheme Functions
	Global Scheme Functions
	DFX Library Functions
	Local Scheme Functions

	Structural Design of Scheme Scripts
	General Algorithm
	General Structure of Scheme Files

	Scheme Application Invocation
	Configuration
	Executing Scheme Applications

	Design Decisions
	Programming Language
	Global Libraries
	Database
	Interprocess Communication (IPC)
	Filesystem
	Design Model
	Database Schema Overview

	Functional Description
	Shared Functionality
	Database Operations
	Initializing Sites
	Reading Waveforms
	Common DFX Scheme Tasks

	Seismic Processing
	Automatic Seismic Detection [1]
	Automatic Origin Beam [2]
	Interactive Beam-on-the-Fly [3]
	Interactive Seismic Recall [4]
	Automatic Seismic Recall [5]
	Automatic Depth-phase SNR [6]
	Automatic Noise Amplitude Estimation [7]
	Automatic Seismic Event Characterization [8]

	Hydroacoustic Processing
	Automatic Hydroacoustic Detection [9]
	Interactive Hydroacoustic Recall [10]
	Automatic Hydroacoustic Event Characterization [11]

	Infrasonic Processing
	Automatic Infrasonic Detection [12]

	Administrative Processing
	Segment Archiving [13]
	Quality Control Statistics [14]

	Interface Design
	Interface with Other IDC Systems
	Interface with External Users
	Interface with Operators

	Chapter 3: Shared Functionality
	Database Operations
	Opening and Closing the Database
	Querying the Database
	Screening Database Containers
	Writing to the Database

	Initializing Sites
	Contents of Initsite Objects
	Creating Initsite Objects
	Single Station Initialization
	Network Initialization

	Reading Waveforms
	Waveform Objects
	wfdata objects
	wfmem Objects

	Determining Data Time Intervals
	Event Processing
	Station Processing

	Reading Binary Files
	Checking Quality of Waveforms

	Common DFX Scheme Tasks
	Defining Generic Objects
	Looping Over Contents of Containers
	Internal Screening of Containers
	Setting and Retrieving Parameters from CVAR Datastore
	Error Handling
	Memory Management

	Chapter 4: Seismic Processing
	Automatic Seismic Detection [1]
	General Description
	Architecture
	Input/Output
	Processes
	Initialize Sites [1.1]
	Acquire Waveforms [1.2]
	Generate and Write TM Beams [1.3]
	Generate Pre-existing Arrival Beams [1.4]
	Perform Detection Processing [1.5]
	Revise Extracted Estimates [1.6]
	Screen Defective and Redundant Detections [1.7]
	Perform Feature Extraction [1.8]

	Detailed Description of Generate and Write TM Beams [1.3]
	Extract Parameters and Save and Reset stav-len [1.3.1]
	Generate Beam [1.3.2]
	Generate Null Beam [1.3.3]
	Generate STA and LTA [1.3.4]
	Write TM Beam to UNIX Filesystem [1.3.5]

	Detailed Description of Generate Pre-existing Arrival Beams [1.4]
	Extract Parameters [1.4.1]
	Query Database (Arrivals with Beams) [1.4.2]
	Generate Detection Object [1.4.3]
	Extract Parameters from Dbarrival Object (and Set into Detection Object) [1.4.4]
	Generate Detection Beam [1.4.5]

	Detailed Description of Perform Detection Processing [1.5]
	Extract Parameters [1.5.1]
	Extract Beam-Name [1.5.2]
	Generate Detection Beam [1.5.3]
	Generate STA and LTA (and SNR and state) [1.5.4]
	Generate Triggers [1.5.5]
	Evaluate Triggers and Generate Detections [1.5.6]

	Detailed Description of Revise Extracted Estimates [1.6]
	Extract Parameters [1.6.1]
	Estimate Revised Onset Time [1.6.2]
	Estimate Amplitude (Best Beam) [1.6.3]
	Generate F-k Spectrum [1.6.4]
	Generate F-k Spectrum via Beam [1.6.5]
	Estimate Polarization [1.6.6]

	Detailed Description of Perform Feature Extraction [1.8]
	Extract Parameters [1.8.1]
	Create and Write Dbarrival Object [1.8.2]
	Generate and Write Dbapma Object [1.8.3]
	Estimate and Write Detection Amplitude [1.8.4]
	Generate and Write Detection Beams [1.8.5]
	Create and Write Dbdetection Object [1.8.6]
	Estimate and Write sbsnr Amplitude [1.8.7]
	Create and Write 3-C Amplitudes�[1.8.8]

	Automatic Origin Beam [2]
	General Description
	Architecture
	Input/Output
	Processes
	Query for Origins [2.1]
	Initialize Sites [2.2]
	Generate and Write Origin Beams�[2.3]

	Detailed Description of Generate and Write Origin Beams [2.3]
	Extract Parameters [2.3.1]
	Identify ti-recipe [2.3.2]
	Acquire Waveforms [2.3.3]
	Generate Beams [2.3.4]
	Write Beams [2.3.5]

	Interactive Beam-on-the-Fly [3]
	General Description
	Architecture
	Input/Output
	Processes
	Extract Parameters [3.1]
	Initialize Sites [3.2]
	Generate and Write Origin Beam [3.3]

	Detailed Description of Initialize Sites [3.2]
	Query for Sites [3.2.1]
	Create initsite [3.2.2]
	Read Travel-time Tables [3.2.3]
	Compute Time Intervals [3.2.4]
	Create Waveform Containers [3.2.5]
	Populate initsite Container [3.2.6]

	Detailed Description of Generate and Write Origin Beam [3.3]
	Compute Time Intervals [3.3.1]
	Acquire Waveforms [3.3.2]
	Check Quality of Waveforms [3.3.3]
	Create Beam [3.3.4]
	Write to Database [3.3.5]

	Interactive Seismic Recall [4]
	General Description
	Architecture
	Input/Output
	Processes
	Initialize Parameters [4.1]
	Initialize Travel-time Tables [4.2]
	Initialize Site [4.3]
	Perform Recall Signal Processing [4.4]

	Detailed Description of Initialize Travel-time Tables [4.2]
	Query for Sites [4.2.1]
	Read Travel-time Tables [4.2.2]

	Detailed Description of Perform Recall Signal Processing [4.4]
	Identify Depth-phase Arrivals [4.4.1]
	Acquire Waveforms [4.4.2]
	Identify Best Beam [4.4.3]
	Revise Detection Attributes [4.4.4]
	Estimate Arrival Features and Write to Database [4.4.5]

	Automatic Seismic Recall [5]
	General Description
	Architecture
	Input/Output
	Processes
	Query for Arrivals [5.1]
	Initialize for Residual Update [5.2]
	Initialize Site [5.3]
	Perform Recall Signal Processing [5.4]

	Detailed Description of Perform Recall Signal Processing [5.4]
	Acquire Waveforms [5.4.1]
	Create Detection [5.4.2]
	Identify Best Beam [5.4.3]
	Revise Detection Attributes [5.4.4]
	Screen Detections [5.4.5]
	Estimate Arrival Features and Write to Database [5.4.6]

	Automatic Depth-phase SNR [6]
	General Description
	Architecture
	Input/Output
	Processes
	Query for Depth-phase Arrivals [6.1]
	Initialize Site [6.2]
	Estimate Depth-phase SNR [6.3]

	Detailed Description of Estimate Depth-phase SNR [6.3]
	Acquire Waveforms [6.3.1]
	Measure Amplitudes [6.3.2]
	Make Amplitude Pairs [6.3.3]
	Find Best Pair [6.3.4]
	Make Amplitude Record [6.3.5]
	Write to Database [6.3.6]

	Automatic Noise Amplitude Estimation [7]
	General Description
	Architecture
	Input/Output
	Processes
	Initialize Parameters [7.1]
	Query the Database [7.2]
	Initialize Sites [7.3]
	Extract Parameters [7.4]
	Estimate Noise Amplitude [7.5]

	Detailed Description of Estimate Noise Amplitude [7.5]
	Extract Parameters [7.5.1]
	Check Event-to-Station Distance [7.5.2]
	Extract Associated Arrivals for this Origin [7.5.3]
	Acquire Waveforms [7.5.4]
	Estimate Origin Amplitudes for Predicted Arrivals [7.5.5]
	Write Estimates for Predicted Arrivals [7.5.6]

	Automatic Seismic Event Characterization [8]
	General Description
	Architecture
	Input/Output
	Processes
	Query for Origins [8.1]
	Initialize Sites [8.2]
	Estimate Event Characteristics [8.3]

	Detailed Description of Estimate Event Characteristics [8.3]
	Extract Parameters [8.3.1]
	Acquire Waveforms [8.3.2]
	Perform Theoretical Amplitude Processing [8.3.3]
	Perform Observed Amplitude Processing [8.3.4]
	Perform First Motion Amplitude Processing [8.3.5]
	Perform Time-frequency Processing [8.3.6]
	Perform Third-moment-of- frequency Processing [8.3.7]
	Perform Short-period-versus- long-period Processing [8.3.8]
	Perform Source-multiplicity Processing [8.3.9]
	Perform Complexity Processing [8.3.10]

	Chapter 5: Hydroacoustic Processing
	Automatic Hydroacoustic Detection [9]
	General Description
	Architecture
	Input/Output
	Processes
	Initialize Sites [9.1]
	Acquire Waveforms [9.2]
	Make Detections [9.3]
	Revise Onset Times [9.4]
	Screen Detections by Time [9.5]
	Measure Hydroacoustic Detection Features [9.6]
	Screen and Submit Results to Database [9.7]

	Detailed Description of Make Detections [9.3]
	Extract Parameters [9.3.1]
	Filter Data [9.3.2]
	Compute SNR [9.3.3]
	Generate Triggers [9.3.4]
	Generate Detections [9.3.5]

	Detailed Description of Measure Hydroacoustic Detection Features [9.6]
	Extract Parameters [9.6.1]
	Correct Waveform for Instrument Response [9.6.2]
	Estimate Hydroacoustic Features [9.6.3]
	Revise Detection Attributes�[9.6.4]

	Interactive Hydroacoustic Recall [10]
	General Description
	Architecture
	Input/Output
	Processes
	Query Database for Arrivals [10.1]
	Extract Station List [10.2]
	Initialize Site [10.3]
	Perform Recall Signal Processing [10.4]

	Detailed Description of Perform Recall Signal Processing [10.4]
	Generate Detection Object [10.4.1]
	Acquire Waveforms [10.4.2]
	Correct Waveform for Instrument Response [10.4.3]
	Estimate Hydroacoustic Features [10.4.4]

	Automatic Hydroacoustic Event Characterization [11]
	General Description
	Architecture
	Input/Output
	Processes
	Query for Origins [11.1]
	Initialize Sites [11.2]
	Estimate Event Characteristics [11.3]

	Detailed Description of Estimate Event Characteristics [11.3]
	Check Station Blockage [11.3.1]
	Compute Time Interval [11.3.2]
	Acquire Waveforms [11.3.3]
	Predict Arrivals [11.3.4]
	Estimate Amplitudes [11.3.5]
	Screen and Submit Results [11.3.6]

	Chapter 6: Infrasonic Processing
	Automatic Infrasonic Detection [12]
	General Description
	Architecture
	Input/Output
	Processes
	Initialize Parameters [12.1]
	Acquire Waveforms [12.2]
	Generate Primary Detection Space (PDS) [12.3]
	Generate Coherence Traces as Beams [12.4]
	Generate Coincidence Detection Space (CDS) [12.5]
	Remove Redundant Detections [12.6]
	Estimate Signal Amplitude [12.7]
	Write Non-Redundant Detections [12.8]

	Detailed Description of Generate Primary Detection Space (PDS) [12.3]
	Filter Waveforms [12.3.1]
	Cross-correlate Waveforms�[12.3.2]
	Generate Slowness Planes [12.3.3]
	Evaluate and Refine Slowness Planes [12.3.4]

	Detailed Description of Generate Coherence Traces as Beams [12.4]
	Generate Coherence Trace from Score Boards [12.4.1]
	Generate dbwfdisc Object�[12.4.2]
	Write wfdisc Record [12.4.3]

	Detailed Description of Remove Redundant Detections [12.6]
	Create dbcontainers [12.6.1]
	Extract Parameters [12.6.2]
	Create dbobjects [12.6.3]
	Set arids into dbobjects [12.6.4]
	Put dbobjects into dbcontainers [12.6.5]
	Delete Redundant Detections [12.6.6]
	Screen for Existing Entities [12.6.7]

	Detailed Description of Estimate Signal Amplitude [12.7]
	Extract Parameters [12.7.1]
	Create Beam-recipe Container [12.7.2]
	Estimate Amplitude [12.7.3]
	Select Best Measurement [12.7.4]

	Detailed Description of Write Non- Redundant Detections [12.8]
	Test for Empty Input Container [12.8.1]
	Write Container [12.8.2]
	Test for Unsuccessful Write�[12.8.3]
	Roll Back Database [12.8.4]

	Chapter 7: Administrative Processing
	Segment Archiving [13]
	General Description
	Architecture
	Input/Output
	Processes
	Query for Origins (in Interval) [13.1]
	Initialize Site-specific Parameters [13.2]
	Perform Segment Archiving [13.3]

	Detailed Description of Perform Segment Archiving [13.3]
	Extract Parameters [13.3.1]
	Calculate Distance-based Time Intervals [13.3.2]
	Calculate Station-to-Event Distance [13.3.3]
	Generate Distance-based Beam Recipes [13.3.4]
	Acquire Waveforms [13.3.5]
	Check Waveform Quality [13.3.6]
	Generate Beams [13.3.7]
	Write Beams to Database�[13.3.8]

	Quality Control Statistics [14]
	General Description
	Architecture
	Input/Output
	Processes
	Identify Missing Waveforms [14.1]
	Extract Quality-control Parameters [14.2]
	Calculate Waveforms Availability [14.3]
	Fill-in qc-stats Object [14.4]
	Write Results to Database [14.5]

	Detailed Description of Identify Missing Waveforms [14.1]
	Extract Parameters [14.1.1]
	Extract Station and Channel [14.1.2]
	Seek Match to sta-i and chan-i in Data Container [14.1.3]
	Set Attributes into qc-stats Object [14.1.4]
	Write Results to Database [14.1.5]

	Detailed Description of Calculate Waveforms Availability [14.3]
	Extract Parameters [14.3.1]
	Compare Requested and Adjusted Available Data Duration [14.3.2]
	Fill-in qc-stats Object with Data Availability [14.3.3]

	Chapter 8: Database Description
	General Description
	Database Tables
	Output Database Attributes
	Seismic Processing
	Automatic Seismic Detection [1]
	Automatic Origin Beam [2]
	Interactive Beam on the Fly [3]
	Interactive Seismic Recall [4]
	Automatic Seismic Recall [5]
	Automatic Depth-phase SNR [6]
	Automatic Noise Amplitude Estimation [7]
	Automatic Seismic Event Characterization [8]

	Hydroacoustic Processing
	Automatic Hydroacoustic Detection [9]
	Interactive Hydroacoustic Recall [10]
	Automatic Hydroacoustic Event Characterization [11]

	Infrasonic Processing
	Automatic Infrasonic Detection [12]

	Administrative Processing
	Segment Archiving [13]
	Quality Control Statistics [14]

	References
	Glossary
	Index

